Abstract
An algorithm is proposed for scheduling dependent tasks in time-varying heterogeneous multiprocessor systems, in which computational power and links between processors are allowed to change over time. Link contention is considered in the multiprocessor scheduling problem. A linear switching-state space-modeling paradigm is introduced to enable theoretical analysis from a system engineering perspective. Theoretical analysis of this model shows its robustness against changes in processing power and link failure. The proposed algorithm uses a fuzzy decision-making procedure to handle changes in the multiprocessor system. The efficiency of the proposed algorithm is illustrated by several random experiments and comparison against a recent benchmark approach. The results show up to 18% average improvement in makespan, especially for larger scale systems.
Similar content being viewed by others
References
Abraham, A., Grosan, C., Liu, H., et al., 2008. Nature inspired meta-heuristics for grid scheduling: single and multi-objective optimization approaches. In: Xhafa, F., Abraham, A. (Eds.), Metaheuristisc for Scheduling in Distributed Computing Environments, 146(3):247–272.
Al-Sharaeh, S., Wells, B.E., 1996. A Comparison of heuristics for list schedules using the Box-method and Pmethod for random digraph generation. Proc. 28th Southeastern Symp. on System Theory, p.467–471. [doi: 10.1109/SSST.1996.493549]
Cheng, S.C., Shiau, D.F., Huang, Y.M., et al., 2009. Dynamic hard-real-time scheduling using genetic algorithm for multiprocessor task with resource and timing constraints. Expert Syst. Appl., 36(1):852–860. [doi:10.1016/j.eswa.2007.10.037]
Crăciun, C., Zaharie, D., Zamfirache, F., 2010. Evolutionary task scheduling in static and dynamic environments. Proc. IEEE Int. Joint Conf. on Computational Cybernetics and Technical Informatics, p.619–624.
Daoud, M.I., Kharma, N., 2008. A high performance algorithm for static task scheduling in heterogeneous distributed computing systems. J. Parall. Distr. Comput., 68(4):399–409. [doi:10.1016/j.jpdc.2007.05.015]
Kong, X., Sun, J., Xu, W., 2008. Permutation-based particle swarm algorithm for tasks scheduling in heterogeneous systems with communication delays. Int. J. Comput. Intell. Res., 4(1):61–70.
Kwok, Y.K., Ahmad, I., 1996. Dynamic critical-path scheduling: an effective technique for allocating task graphs to multiprocessors. IEEE Trans. Parall. Distr. Syst., 7(5): 506–521. [doi:10.1109/71.503776]
Long, Q.Q., Lin, J., Sun, Z.X., 2011. Agent scheduling model for adaptive dynamic load balancing in agent-based distributed simulations. Simul. Modell. Pract. Theory, 19(4):1021–1034. [doi:10.1016/j.simpat.2011.01.002]
Page, A.J., Naughton, T.J., 2005. Dynamic task scheduling using genetic algorithms for heterogeneous distributed computing. Proc. 19th IEEE Int. Parallel and Distributed Processing Symp., p.152–159. [doi:10.1109/IPDPS.2005.184]
Page, A.J., Keane, T.M., Naughton, T.J., 2008. Scheduling in a dynamic heterogeneous distributed system using estimation error. J. Parall. Distr. Comput., 68(11):1452–1462. [doi:10.1016/j.jpdc.2008.07.004]
Page, A.J., Keane, T.M., Naughton, T.J., et al., 2010. Multiheuristic dynamic task allocation using genetic algorithms in a heterogeneous distributed system. J. Parall. Distr. Comput., 70(7):758–766. [doi:10.1016/j.jpdc.2010.03.011]
Prodan, R., Fahringer, T., 2005. Dynamic scheduling of scientific workflow applications on the grid: a case study. Proc. 20th ACM Symp. on Applied Computing, p.687–694. [doi:10.1145/1066677.1066835]
Shahul, A.Z.S., Sinnen, O., 2010. Scheduling task graphs optimally with A*. J. Supercomput., 51(1):310–332.
Shin, K., Cha, M., Jang, M., et al., 2008. Task scheduling algorithm using minimized duplications in homogeneous systems. J. Parall. Distr. Comput., 68(8):1146–1156. [doi:10.1016/j.jpdc.2008.04.001]
Sinnen, O., 2007. Task scheduling for parallel systems (1st Ed.). JohnWiley & Sons-Interscience.
Sinnen, O., Sousa, L.A., Sandnes, F.E., 2006. Toward a realistic task scheduling model. IEEE Trans. Parall. Distr. Syst., 17(3):263–275. [doi:10.1109/TPDS.2006.40]
Sivanandam, S.N., Visalakshi, P., 2009. Dynamic task scheduling with load balancing using hybrid particle swarm optimization. Int. J. Open Probl. Comput. Math., 2(3): 475–488.
Tabatabaee-Yazdi, H., Akbarzadeh-T, M.R., 2013. The linear switching state space: a new modeling paradigm for task scheduling problems. Int. J. Innov. Comput. Inform. Contr., 9(4):1651–1677.
Yoo, M., 2009. Real-time task scheduling by multiobjective genetic algorithm. J. Syst. Softw., 82(4):619–628. [doi: 10.1016/j.jss.2008.08.039]
Yoo, M., Gen, M., 2007. Scheduling algorithm for real-time tasks using multiobjective hybrid genetic algorithm in heterogeneous multiprocessors system. Comput. Oper. Res., 34(10):3084–3098. [doi:10.1016/j.cor.2005.11.016]
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tabatabaee, H., Akbarzadeh-T, M.R. & Pariz, N. Dynamic task scheduling modeling in unstructured heterogeneous multiprocessor systems. J. Zhejiang Univ. - Sci. C 15, 423–434 (2014). https://doi.org/10.1631/jzus.C1300204
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C1300204
Key words
- Dynamic task scheduling
- Fuzzy logic
- Genetic algorithms
- Unstructured environment
- Linear switching state space