Abstract
This paper deals with the optimal placement of distributed generation (DG) units in distribution systems via an enhanced multi-objective particle swarm optimization (EMOPSO) algorithm. To pursue a better simulation of the reality and provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational constraints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been integrated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is employed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage stability. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and locations of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units.
Similar content being viewed by others
References
Abu-Mouti, F.S., El-Hawary, M.E., 2011. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm. IEEE Trans. Power Del., 26(4):2090–2101. [doi:10.1109/TPWRD.2011.2158246]
Akorede, M.F., Hizam, H., Aris, I., et al., 2011. Effective method for optimal allocation of distributed generation units in meshed electric power systems. IET Gener. Transm. Distr., 5(2):276–287. [doi:10.1049/iet-gtd.2010.0199]
Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al., 2010. Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans. Power Syst., 25(1):360–370. [doi:10.1109/TPWRS.2009.2030276]
Ayres, H.M., Freitas, W., de Almeida, et al., 2010. Method for determining the maximum allowable penetration level of distributed generation without steady-state voltage violations. IET Gener. Transm. Distr., 4(4):495–508. [doi:10. 1049/iet-gtd.2009.0317]
Baran, M.E., Wu, F.F., 1989. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Del., 4(2):1401–1407. [doi:10.1109/61.25627]
Chen, M.Y., Cheng, S., 2012. Multi-objective optimization of the allocation of DG units considering technical, economical and environmental attributes. Przeglad Elektrotechnizny, 88(12A):233–237.
Chen, M.Y., Zhang, C.Y., Luo, C.Y., 2009. Adaptive evolutionary multi-objective particle swarm optimization algorithm. Contr. Dec., 24(12):1851–1855 (in Chinese).
Coello, C.A.C., Pulido, G.T., Lechuga, M.S., 2004. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput., 8(3):256–279. [doi:10.1109/TEVC.2004.826067]
Deb, K., 2001. Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York, USA, p.7.
Deb, K., Pratap, A., Agarwal, S., et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6(2):182–197. [doi:10.1109/4235.996017]
Dehghanian, P., Hosseini, S.H., Moeini-Aghtaie, M., et al., 2013. Optimal siting of DG Units in power systems from a probabilistic multi-objective optimization perspective. Int. J. Electr. Power Energy Syst., 51(10):14–26. [doi:10.1016/j.ijepes.2013.02.014]
Devi, S., Geethanjali, M., 2013. Application of modified bacterial foraging optimization algorithm for optimal placement and sizing of distributed generation. Expert Syst. Appl., 41(6):2772–2781. [doi:10.1016/j.eswa.2013.10.010]
Gopiya Naik, S., Khatod, D.K., Sharma, M.P., 2013. Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. Int. J. Electr. Power Energy Syst., 53(12):967–973. [doi:10.1016/j.ijepes.2013.06.008]
Hu, G.H., He, W., Cheng, S., et al., 2013. Optimal allocation of distributed generation units considering environmental effects. J. Inf. Comput. Sci., 10(11):3353–3362. [doi:10.12733/jics20101937]
Jia, S.J., Du, B., Yue, H., 2012. Local search and hybrid diversity strategy based multi-objective particle swarm optimization algorithm. Contr. Dec., 27(6):813–818 (in Chinese).
Kumar, K.V., Selvan, M.P., 2009. Planning and operation of distributed generations in distribution systems for improved voltage profile. Power Systems Conf. and Exposition, p.1–7. [doi:10.1109/PSCE.2009.4840152]
Lee, S.H., Park, J.W., 2009. Selection of optimal location and size of multiple distributed generations by using Kalman filter algorithm. IEEE Trans. Power Syst., 24(3):1393–1400. [doi:10.1109/TPWRS.2009.2016540]
Li, X.D., 2003. A non-dominated sorting particle swarm optimizer for multiobjective optimization. LNCS, 2723: 27–48. [doi:10.1007/3-540-45105-6_4]
Li, Y., Zhou, B.X., Lin, N., et al., 2013. Application of improved clonal genetic algorithm in distributed generation planning. Proc. CSU-EPSA, 25(4):128–132 (in Chinese).
Liu, J., Bi, P.X., Dong, H.P., 2002. Analysis and Optimization of Complex Distribution Networks. China Electric Power Press, Beijing, China, p.140 (in Chinese).
Mistry, K.D., Roy, R., 2014. Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth. Int. J. Electr. Power Energy Syst., 54(1): 505–515. [doi:10.1016/j.ijepes.2013.07.032]
Moradi, M.H., Abedini, M., 2012. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst., 34(1):66–74. [doi:10.1016/j.ijepes.2011.08.023]
Ratnaweera, A., Halgamuge, S.K., Watson, H.C., 2004. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 8(3):240–255. [doi:10.1109/TEVC.2004.826071]
Sheng, W.X., Liu, Y.M., Meng, X.L., et al., 2012. An improved strength Pareto evolutionary algorithm 2 with application to the optimization of distributed generations. Comput. Math. Appl., 64(5):944–955. [doi:10.1016/j.camwa.2012.01.063]
Sierra, M.R., Coello, C.A.C., 2006. Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res., 2(3):287–308.
Tanaka, K., Oshiro, M., Toma, S., et al., 2010. Decentralised control of voltage in distribution systems by distributed generators. IET Gener. Transm. Distr., 4(11):1251–1260. [doi:10.1049/iet-gtd.2010.0003]
Yu, Q., Liu, G., Liu, Z.F., et al., 2013. Multi-objective optimal planning of distributed generation based on quantum differential evolution algorithm. Power Syst. Protect. Contr., 41(14):66–72 (in Chinese).
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Science & Technology Innovation Team of Outstanding Youth of Hubei Provincial Universities (No. T201319) and the Scientific Research Foundation for Talents of China Three Gorges University (No. 0620130076)
Rights and permissions
About this article
Cite this article
Cheng, S., Chen, My., Wai, Rj. et al. Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm. J. Zhejiang Univ. - Sci. C 15, 300–311 (2014). https://doi.org/10.1631/jzus.C1300250
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1631/jzus.C1300250
Key words
- Distributed generation
- Multi-objective particle swarm optimization
- Optimal placement
- Voltage stability index
- Power loss