Skip to main content
Log in

Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

This paper deals with the optimal placement of distributed generation (DG) units in distribution systems via an enhanced multi-objective particle swarm optimization (EMOPSO) algorithm. To pursue a better simulation of the reality and provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational constraints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been integrated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is employed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage stability. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and locations of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Mouti, F.S., El-Hawary, M.E., 2011. Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm. IEEE Trans. Power Del., 26(4):2090–2101. [doi:10.1109/TPWRD.2011.2158246]

    Article  Google Scholar 

  • Akorede, M.F., Hizam, H., Aris, I., et al., 2011. Effective method for optimal allocation of distributed generation units in meshed electric power systems. IET Gener. Transm. Distr., 5(2):276–287. [doi:10.1049/iet-gtd.2010.0199]

    Article  Google Scholar 

  • Atwa, Y.M., El-Saadany, E.F., Salama, M.M.A., et al., 2010. Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans. Power Syst., 25(1):360–370. [doi:10.1109/TPWRS.2009.2030276]

    Article  Google Scholar 

  • Ayres, H.M., Freitas, W., de Almeida, et al., 2010. Method for determining the maximum allowable penetration level of distributed generation without steady-state voltage violations. IET Gener. Transm. Distr., 4(4):495–508. [doi:10. 1049/iet-gtd.2009.0317]

    Article  Google Scholar 

  • Baran, M.E., Wu, F.F., 1989. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Del., 4(2):1401–1407. [doi:10.1109/61.25627]

    Article  Google Scholar 

  • Chen, M.Y., Cheng, S., 2012. Multi-objective optimization of the allocation of DG units considering technical, economical and environmental attributes. Przeglad Elektrotechnizny, 88(12A):233–237.

    MathSciNet  Google Scholar 

  • Chen, M.Y., Zhang, C.Y., Luo, C.Y., 2009. Adaptive evolutionary multi-objective particle swarm optimization algorithm. Contr. Dec., 24(12):1851–1855 (in Chinese).

    MATH  MathSciNet  Google Scholar 

  • Coello, C.A.C., Pulido, G.T., Lechuga, M.S., 2004. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput., 8(3):256–279. [doi:10.1109/TEVC.2004.826067]

    Article  Google Scholar 

  • Deb, K., 2001. Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York, USA, p.7.

    MATH  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput., 6(2):182–197. [doi:10.1109/4235.996017]

    Article  Google Scholar 

  • Dehghanian, P., Hosseini, S.H., Moeini-Aghtaie, M., et al., 2013. Optimal siting of DG Units in power systems from a probabilistic multi-objective optimization perspective. Int. J. Electr. Power Energy Syst., 51(10):14–26. [doi:10.1016/j.ijepes.2013.02.014]

    Article  Google Scholar 

  • Devi, S., Geethanjali, M., 2013. Application of modified bacterial foraging optimization algorithm for optimal placement and sizing of distributed generation. Expert Syst. Appl., 41(6):2772–2781. [doi:10.1016/j.eswa.2013.10.010]

    Article  Google Scholar 

  • Gopiya Naik, S., Khatod, D.K., Sharma, M.P., 2013. Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. Int. J. Electr. Power Energy Syst., 53(12):967–973. [doi:10.1016/j.ijepes.2013.06.008]

    Article  Google Scholar 

  • Hu, G.H., He, W., Cheng, S., et al., 2013. Optimal allocation of distributed generation units considering environmental effects. J. Inf. Comput. Sci., 10(11):3353–3362. [doi:10.12733/jics20101937]

    Article  Google Scholar 

  • Jia, S.J., Du, B., Yue, H., 2012. Local search and hybrid diversity strategy based multi-objective particle swarm optimization algorithm. Contr. Dec., 27(6):813–818 (in Chinese).

    Google Scholar 

  • Kumar, K.V., Selvan, M.P., 2009. Planning and operation of distributed generations in distribution systems for improved voltage profile. Power Systems Conf. and Exposition, p.1–7. [doi:10.1109/PSCE.2009.4840152]

    Google Scholar 

  • Lee, S.H., Park, J.W., 2009. Selection of optimal location and size of multiple distributed generations by using Kalman filter algorithm. IEEE Trans. Power Syst., 24(3):1393–1400. [doi:10.1109/TPWRS.2009.2016540]

    Article  Google Scholar 

  • Li, X.D., 2003. A non-dominated sorting particle swarm optimizer for multiobjective optimization. LNCS, 2723: 27–48. [doi:10.1007/3-540-45105-6_4]

    Google Scholar 

  • Li, Y., Zhou, B.X., Lin, N., et al., 2013. Application of improved clonal genetic algorithm in distributed generation planning. Proc. CSU-EPSA, 25(4):128–132 (in Chinese).

    Google Scholar 

  • Liu, J., Bi, P.X., Dong, H.P., 2002. Analysis and Optimization of Complex Distribution Networks. China Electric Power Press, Beijing, China, p.140 (in Chinese).

    Google Scholar 

  • Mistry, K.D., Roy, R., 2014. Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth. Int. J. Electr. Power Energy Syst., 54(1): 505–515. [doi:10.1016/j.ijepes.2013.07.032]

    Article  Google Scholar 

  • Moradi, M.H., Abedini, M., 2012. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst., 34(1):66–74. [doi:10.1016/j.ijepes.2011.08.023]

    Article  Google Scholar 

  • Ratnaweera, A., Halgamuge, S.K., Watson, H.C., 2004. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 8(3):240–255. [doi:10.1109/TEVC.2004.826071]

    Article  Google Scholar 

  • Sheng, W.X., Liu, Y.M., Meng, X.L., et al., 2012. An improved strength Pareto evolutionary algorithm 2 with application to the optimization of distributed generations. Comput. Math. Appl., 64(5):944–955. [doi:10.1016/j.camwa.2012.01.063]

    Article  Google Scholar 

  • Sierra, M.R., Coello, C.A.C., 2006. Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res., 2(3):287–308.

    MathSciNet  Google Scholar 

  • Tanaka, K., Oshiro, M., Toma, S., et al., 2010. Decentralised control of voltage in distribution systems by distributed generators. IET Gener. Transm. Distr., 4(11):1251–1260. [doi:10.1049/iet-gtd.2010.0003]

    Article  Google Scholar 

  • Yu, Q., Liu, G., Liu, Z.F., et al., 2013. Multi-objective optimal planning of distributed generation based on quantum differential evolution algorithm. Power Syst. Protect. Contr., 41(14):66–72 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Cheng.

Additional information

Project supported by the Science & Technology Innovation Team of Outstanding Youth of Hubei Provincial Universities (No. T201319) and the Scientific Research Foundation for Talents of China Three Gorges University (No. 0620130076)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, S., Chen, My., Wai, Rj. et al. Optimal placement of distributed generation units in distribution systems via an enhanced multi-objective particle swarm optimization algorithm. J. Zhejiang Univ. - Sci. C 15, 300–311 (2014). https://doi.org/10.1631/jzus.C1300250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300250

Key words

CLC number

Navigation