Skip to main content
Log in

Querying dynamic communities in online social networks

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Online social networks (OSNs) offer people the opportunity to join communities where they share a common interest or objective. This kind of community is useful for studying the human behavior, diffusion of information, and dynamics of groups. As the members of a community are always changing, an efficient solution is needed to query information in real time. This paper introduces the Follow Model to present the basic relationship between users in OSNs, and combines it with the MapReduce solution to develop new algorithms with parallel paradigms for querying. Two models for reverse relation and high-order relation of the users were implemented in the Hadoop system. Based on 75 GB message data and 26 GB relation network data from Twitter, a case study was realized using two dynamic discussion communities: #musicmonday and #beatcancer. The querying performance demonstrates that the new solution with the implementation in Hadoop significantly improves the ability to find useful information from OSNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anagnostopoulos, A., Kumar, R., Mahdian, M., 2008. Influence and correlation in social networks. Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.7–15. [doi:10.1145/1401890.1401897]

    Chapter  Google Scholar 

  • Bhandarkar, M., 2010. MapReduce programming with Apache Hadoop. 24th IEEE Int. Parallel & Distributed Processing Symp., p.1. [doi:10.1109/IPDPS.2010.5470377]

    Google Scholar 

  • Bialecki, A., Cafarella, M., Cutting, D., et al., 2005. Hadoop: a framework for running applications on large clusters built of commodity hardware. Available from http://lucene.apache.org/hadoop.

    Google Scholar 

  • Cha, M., Haddadi, H., Benevenuto, F., et al., 2010. Measuring user influence in Twitter: the million follower fallacy. Proc. 4th Int. AAAI Conf. on Weblogs and Social Media, p.10–17.

    Google Scholar 

  • Chen, W., Wang, Y., Yang, S., 2009. Efficient influence maximization in social networks. Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.199–208. [doi:10.1145/1557019.1557047]

    Chapter  Google Scholar 

  • Dean, J., Ghemawat, S., 2008. MapReduce: simplified data processing on large clusters. Commun. ACM, 51(1):107–113. [doi:10.1145/1327452.1327492]

    Article  Google Scholar 

  • Goyal, A., Bonchi, F., Lakshmanan, L.V.S., 2010. Learning influence probabilities in social networks. Proc. 3rd ACM Int. Conf. on Web Search and Data Mining, p.241–250. [doi:10.1145/1718487.1718518]

    Chapter  Google Scholar 

  • Karypis, G., Aggarwal, R., Kumar, V., et al., 1999. Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans. VLSI, 7(1):69–79. [doi:10.1109/92.748202]

    Article  Google Scholar 

  • Kwak, H., Lee, C., Park, H., et al., 2010. What is Twitter, a social network or a news media? Proc. 19th Int. Conf. on World Wide Web, p.591–600. [doi:10.1145/1772690.1772751]

    Chapter  Google Scholar 

  • Liben-Nowell, D., Kleinberg, J., 2007. The link-prediction problem for social networks. J. Amer. Soc. Inform. Sci. Technol., 58(7):1019–1031. [doi:10.1002/asi.20591]

    Article  Google Scholar 

  • Lü, L., Zhou, T., 2011. Link prediction in complex networks: a survey. Phys. A, 390(6):1150–1170. [doi:10.1016/j.physa. 2010.11.027]

    Article  Google Scholar 

  • Sandes, E.F.O., Weigang, L., de Melo, A.C.M.A., 2012. Logical model of relationship for online social networks and performance optimization of queries. LNCS, 7651:726–736. [doi:10.1007/978-3-642-35063-4_59]

    Google Scholar 

  • Sun, Y., Han, J., Aggarwal, C.C., et al., 2012. When will it happen?—relationship prediction in heterogeneous information networks. Proc. 5th ACM Int. Conf. on Web Search and Data Mining, p.663–672. [doi:10.1145/2124295.2124373]

    Google Scholar 

  • Tang, J., Sun, J., Wang, C., et al., 2009. Social influence analysis in large-scale networks. Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.807–816. [doi:10.1145/1557019.1557108]

    Chapter  Google Scholar 

  • Tang, Z., Lin, H., Li, K., et al., 2012. Acolyte: an in-memory social network query system. Proc. 13th Int. Conf. on Web Information Systems Engineering, p.755–763. [doi:10.1007/978-3-642-35063-4_62]

    Google Scholar 

  • Theobald, M., Bast, H., Majumdar, D., et al., 2008. TopX: efficient and versatile top-k query processing for semistructured data. VLDB J., 17(1):81–115. [doi:10.1007/s00778-007-0072-z]

    Article  Google Scholar 

  • Weigang, L., Zheng, J., Liu, G., 2013. W-entropy method to measure the influence of the members from social networks. Int. J. Web Eng. Technol., in press.

  • Yang, J., Leskovec, J., 2011. Patterns of temporal variation in online media. Proc. 4th ACM Int. Conf. on Web Search and Data Mining, p.177–186. [doi:10.1145/1935826.1935863]

    Chapter  Google Scholar 

  • Zhang, Z.K., Liu, C., 2010. A hypergraph model of social tagging networks. J. Stat. Mech., 2010(10):P10005. [doi:10.1088/1742-5468/2010/10/P10005]

    Article  Google Scholar 

  • Zheng, J., Weigang, L., Uden, L., 2014. Top-X querying in online social networks with MapReduce solution. Proc. 8th Int. Conf. on Knowledge Management in Organizations, p.397–410. [doi:10.1007/978-94-007-7287-8_32]

    Google Scholar 

  • Zheng, L., Zhou, X., Lin, Z., et al., 2012. Accelerating queries over microblog dataset via grouping and indexing techniques. Proc. 13th Int. Conf. on Web Information Systems Engineering, p.764–770. [doi:10.1007/978-3-642-35063-4_63]

    Google Scholar 

  • Zhu, F., Liu, J., Xu, L., 2012. A fast and high throughput SQL query system for big data. Proc. 13th Int. Conf. on Web Information Systems Engineering, p.783–788. [doi:10.1007/978-3-642-35063-4_66]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Weigang.

Additional information

Project supported by the Brazilian National Council for Scientific and Technological Development (CNPq) (No. 304058/2010-6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigang, L., Sandes, E.F.O., Zheng, J. et al. Querying dynamic communities in online social networks. J. Zhejiang Univ. - Sci. C 15, 81–90 (2014). https://doi.org/10.1631/jzus.C1300281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300281

Key words

CLC number

Navigation