Skip to main content
Log in

A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Increasing awareness concerning food safety problems has been driving the search for simple and efficient biochemical analytical methods. In this paper, we develop a portable electro-acoustic biosensor based on a film bulk acoustic resonator for the detection of pesticide residues in agricultural products. A shear mode ZnO film bulk acoustic resonator with a micro-machining structure was fabricated as a mass-sensitive transducer for the real-time detection of antibody-antigen reactions in liquids. In order to obtain an ultra-low detection level, the artificial antigens were immobilized on the sensing surface of the resonator to employ a competitive format for the immunoassays. The competitive immunoreactions can be observed clearly through monitoring the frequency changes. The presence of pesticides was detected through the diminution of the frequency shift compared with the level without pesticides. The limit of detection for carbaryl (a widely used pesticide for vegetables and crops) is 2×10−10 M. The proposed device represents a potential alternative to the complex optical systems and electrochemical methods that are currently being used, and represents a significant opportunity in terms of simplicity of use and portability for on-site food safety testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, D., Wang, J.J., Xu, Y., et al., 2010. The pure-shear mode solidly mounted resonator based on c-axis oriented ZnO film. Appl. Surf. Sci., 256(24):7638–7642. [doi:10.1016/j.apsusc.2010.06.020]

    Article  Google Scholar 

  • Chen, D., Wang, J.J., Liu, Q.X., et al., 2011. Highly sensitive ZnO thin film bulk acoustic resonator for hydrogen detection. J. Micromech. Microeng., 21(11):1150181–1150187. [doi:10.1088/0960-1317/21/11/115018]

    MathSciNet  Google Scholar 

  • Chen, D., Wang, J.J., Xu, Y., et al., 2012. A thin film electro-acoustic enzyme biosensor allowing the detection of trace organophosphorus pesticides. Anal. Biochem., 429(1):42–44. [doi:10.1016/j.ab.2012.07.002]

    Article  MathSciNet  Google Scholar 

  • Deng, A.P., Himmelsbach, M., Zhu, Q.Z., et al., 2003. Residue analysis of the pharmaceutical diclofenac in different water types using ELISA and GC-MS. Environ. Sci. Technol., 37(15):3422–3429. [doi:10.1021/es0341945]

    Article  Google Scholar 

  • Dua, D., Yea, X., Caib, J., et al., 2010. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosens. & Bioelectron., 25(11):2503–2508. [doi:10.1016/j.bios.2010.04.018]

    Article  Google Scholar 

  • Erbahar, D.D., Gurol, I., Gumus, G., et al., 2012. Pesticide sensing in water with phthalocyanine based QCM sensors. Sens. Actuat. B, 173:562–568. [doi:10.1016/j.snb.2012.07.041]

    Article  Google Scholar 

  • Jiang, X.S., Li, D.Y., Xu, X., et al., 2008. Immunosensors for detection of pesticide residues. Biosens. & Bioelectron., 23(11):1577–1587. [doi:10.1016/j.bios.2008.01.035]

    Article  Google Scholar 

  • Katardjiev, I., Yantchev, V., 2012. Recent developments in thin film electro-acoustic technology for biosensor applications. Vacuum, 86(5):520–531. [doi:10.1016/j.vacuum.2011.10.012]

    Article  Google Scholar 

  • Kim, N., Park, I.S., Kim, D.K., 2007. High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. Biosens. & Bioelectron., 22(8):1593–1599. [doi:10.1016/j.bios.2006.07.009]

    Article  Google Scholar 

  • Lee, H.S., Kim, Y.A., Cho, Y.A., et al., 2002. Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. Chemosphere, 46(4): 571–576. [doi:10.1016/S0045-6535(01)00005-4]

    Article  Google Scholar 

  • March, C., Manclús, J.J., Jiménez, Y., et al., 2009. A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices. Talanta, 78(3): 827–833. [doi:10.1016/j.talanta.2008.12.058]

    Article  Google Scholar 

  • Mauriz, E., Calle, A., Abad, A., et al., 2006. Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. Biosens. & Bioelectron., 21(11):2129–2136. [doi:10.1016/j.bios.2005.10.013]

    Article  Google Scholar 

  • Narsaiah, K., Jha, S.N., Bhardwaj, R., et al., 2012. Optical biosensors for food quality and safety assurance-a review. J. Food Sci. Technol., 49(4):383–406. [doi:10.1007/s13197-011-0437-6]

    Article  Google Scholar 

  • Přibyl, J., Hepel, M., Halámek, J., et al., 2003. Development of piezoelectric immunosensors for competitive and direct determination of atrazine. Sens. Actuat. B, 91(1–3):333–341. [doi:10.1016/S0925-4005(03)00107-2]

    Google Scholar 

  • Pundir, C.S., Chauhan, N., 2012. Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal. Biochem., 429(1):19–31. [doi:10.1016/j.ab.2012.06.025]

    Article  Google Scholar 

  • Qian, G.L., Wang, L.M., Wu, Y.R., et al., 2009. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chem., 117(2):364–370. [doi:10.1016/j.foodchem.2009.03.097]

    Article  Google Scholar 

  • Satoh, Y., Nishihara, T., Yokoyama, T., et al., 2005. Development of piezoelectric thin film resonator and its impact on future wireless communication systems. Jpn. J. Appl. Phys., 44(5A):2883–2894. [doi:10.1143/JJAP.44.2883]

    Article  Google Scholar 

  • Viswanathan, S., Radecka, H., Radecki, J., 2009. Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens. & Bioelectron., 24(9):2772–2777. [doi:10.1016/j.bios.2009.01.044]

    Article  Google Scholar 

  • Voiculescu, I., Nordin, A.N., 2012. Acoustic wave based MEMS devices for biosensing applications. Biosens. & Bioelectron., 33(1):1–9. [doi:10.1016/j.bios.2011.12.041]

    Article  Google Scholar 

  • Wingqvist, G., 2010. AlN-based sputter-deposited shear mode thin film bulk acoustic resonator (FBAR) for biosensor applications—a review. Surf. Coat. Technol., 205(5): 1279–1286. [doi:10.1016/j.surfcoat.2010.08.109]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Additional information

Project supported by the National Science Foundation of China (No. 61101027), Qingdao Science and Technology Program (No. 12-1-4-6-(8)-jch), Shangdong Provincial Young and Middle-Aged Scientists Research Awards Fund (No. BS2012DX032), Shandong Provincial Natural Science Foundation (No. ZR2013FM018), and SDUST Research Funds (Nos. 2011KYJQ101 and 2012KYTD103)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Jj., Liu, Wh., Chen, D. et al. A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals. J. Zhejiang Univ. - Sci. C 15, 383–389 (2014). https://doi.org/10.1631/jzus.C1300289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300289

Key words

CLC number

Navigation