Skip to main content
Log in

Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

An Erratum to this article was published on 11 November 2014

Abstract

We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F (FGKFCM-F), where F refers to kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all intermediate problems using kernel-based fuzzy c-means-F (KFCM-F) as a local search procedure. Due to the incremental nature and the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means (FCM): sensitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the computational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagirov, A.M., 2008. Modified global k-means algorithm for minimum sum-of-squares clustering problems. Pattern Recogn., 41(10):3192–3199. [doi:10.1016/j.patcog.2008. 04.004]

    Article  MATH  Google Scholar 

  • Balasko, B., Abonyi, J., Feil, B., 2005. Fuzzy Clustering and Data Analysis Toolbox. Department of Process Engineering, University of Veszprem, Veszprem.

    Google Scholar 

  • Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York.

    Book  MATH  Google Scholar 

  • Bozkir, A.S., Sezer, E.A., 2013. FUAT—a fuzzy clustering analysis tool. Expert Syst. Appl., 40(3):842–849. [doi:10. 1016/j.eswa.2012.05.038]

    Article  Google Scholar 

  • Chiang, J.H., Hao, P.Y., 2003. A new kernel-based fuzzy clustering approach: support vector clustering with cell growing. IEEE Trans. Fuzzy Syst., 11(4):518–527. [doi:10. 1109/TFUZZ.2003.814839]

    Article  Google Scholar 

  • Cover, T.M., 1965. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electr. Comput., EC-14(3): 326–334. [doi:10.1109/PGEC.1965.264137]

    Article  Google Scholar 

  • Duda, R.O., Hart, P.E., 1973. Pattern Classification and Scene Analysis. Wiley, New York.

    MATH  Google Scholar 

  • Dunn, J.C., 1973. A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern., 3(3):32–57. [doi:10.1080/01969727308546046]

    Article  MATH  MathSciNet  Google Scholar 

  • Filippone, M., Camastra, F., Masulli, F., et al., 2008. A survey of kernel and spectral methods for clustering. Pattern Recogn., 41(1):176–190. [doi:10.1016/j.patcog.2007.05.018]

    Article  MATH  Google Scholar 

  • Girolami, M., 2002. Mercer kernel-based clustering in feature space. IEEE Trans. Neur. Netw., 13(3):780–784. [doi:10.1109/TNN.2002.1000150]

    Article  Google Scholar 

  • Gong, M., Su, L., Jia, M., et al., 2014. Fuzzy clustering with a modified MRF energy function for change detection in synthetic aperture radar images. IEEE Trans. Fuzzy Syst., 22(1):98–109. [doi:10.1109/TFUZZ.2013.2249072]

    Article  Google Scholar 

  • Hu, Y., Wu, D., Nucci, A., 2013. Fuzzy-clustering-based decision tree approach for large population speaker identification. IEEE Trans. Audio Speech Lang. Process., 21(4):762–774. [doi:10.1109/TASL.2012.2234113]

    Article  Google Scholar 

  • Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: a review. ACM Comput. Surv., 31(3):264–323. [doi:10.1145/331499.331504]

    Article  Google Scholar 

  • Jamaati, M., Marvi, H., 2008. Performance assessment of joint feature derived from Mellin-cepstrum for vowel recognition. Int. Rev. Electr. Eng. IREE, 3(6):1077–1086.

    Google Scholar 

  • Kim, D.W., Lee, K.Y., Lee, D., et al., 2005. Evaluation of the performance of clustering algorithms in kernel-induced feature space. Pattern Recogn., 38(4):607–611. [doi:10.1016/j.patcog.2004.09.006]

    Article  Google Scholar 

  • Li, Z., Tang, S., Xue, J., et al., 2001. Modified FCM clustering based on kernel mapping. Multispectral Image Processing and Pattern Recognition, International Society for Optics and Photonics, p.241–245. [doi:10.1117/12.441658]

    Google Scholar 

  • Likas, A., Vlassis, N., Verbeek, J.J., 2003. The global k-means clustering algorithm. Pattern Recogn., 36(2):451–461. [doi:10.1016/S0031-3203(02)00060-2]

    Article  Google Scholar 

  • Liu, C., Zhang, X., Li, X., et al., 2012. Gaussian kernelized fuzzy c-means with spatial information algorithm for image segmentation. J. Comput., 7(6):1511–1518. [doi:10.4304/jcp.7.6.1511-1518]

    Google Scholar 

  • Mercer, J., 1909. Functions of positive and negative type, and their connection with the theory of integral equations. Phil. Trans. R. Soc. Lond. Ser. A, 209(441–458):415–446. [doi:10.1098/rsta.1909.0016]

    Article  MATH  Google Scholar 

  • Muller, K., Mika, S., Ratsch, G., et al., 2001. An introduction to kernel-based learning algorithms. IEEE Trans. Neur. Netw., 12(2):181–201. [doi:10.1109/72.914517]

    Article  Google Scholar 

  • Nguyen, T.M., Wu, Q.M.J., 2013. Dynamic fuzzy clustering and its application in motion segmentation. IEEE Trans. Fuzzy Syst., 21(6):1019–1031. [doi:10.1109/TFUZZ.2013.2240689]

    Article  MathSciNet  Google Scholar 

  • Picone, J.W., 1993. Signal modeling techniques in speech recognition. Proc. IEEE, 81(9):1215–1247. [doi:10.1109/5.237532]

    Article  Google Scholar 

  • Shen, H.B., Yang, J., Wang, S.T., et al., 2006. Attribute weighted Mercer kernel based fuzzy clustering algorithm for general non-spherical datasets. Soft Comput., 10(11): 1061–1073. [doi:10.1007/s00500-005-0043-5]

    Article  Google Scholar 

  • Tsai, D.M., Lin, C.C., 2011. Fuzzy c-means based clustering for linearly and nonlinearly separable data. Pattern Recogn., 44(8):1750–1760. [doi:10.1016/j.patcog.2011.02.009]

    Article  MATH  Google Scholar 

  • Wang, W., Zhang, Y., Li, Y., et al., 2006. The global fuzzy c-means clustering algorithm. 6th World Congress on Intelligent Control and Automation, p.3604–3607. [doi:10.1109/WCICA.2006.1713041]

    Google Scholar 

  • Wu, Z., Xie, W., Yu, J., 2003. Fuzzy c-means clustering algorithm based on kernel method. Proc. 5th Int. Conf. on Computational Intelligence and Multimedia Applications, p.49–54. [doi:10.1109/iccima.2003.1238099]

    Google Scholar 

  • Xu, R., Wunsch, D., 2005. Survey of clustering algorithms. IEEE Trans. Neur. Netw., 16(3):645–678. [doi:10.1109/TNN.2005.845141]

    Article  Google Scholar 

  • Yang, M.S., Tsai, H.S., 2008. A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recogn. Lett., 29(12):1713–1725. [doi:10.1016/j.patrec.2008.04.016]

    Article  MathSciNet  Google Scholar 

  • Yu, C.Y., Li, Y., Liu, A.L., et al., 2011. A novel modified kernel fuzzy c-means clustering algorithm on image segementation. IEEE 14th Int. Conf. on Computational Science and Engineering, p.621–626. [doi:10.1109/cse.2011.109]

    Google Scholar 

  • Zadeh, L.A., 1965. Fuzzy sets. Inf. Contr., 8(3):338–353. [doi:10.1016/S0019-9958(65)90241-X]

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, D.Q., Chen, S.C., 2002. Fuzzy clustering using kernel method. Int. Conf. on Control and Automation, p.162–163. [doi:10.1109/icca.2002.1229535]

    Google Scholar 

  • Zhang, D.Q., Chen, S.C., 2003a. Clustering incomplete data using kernel-based fuzzy c-means algorithm. Neur. Process. Lett., 18(3):155–162. [doi:10.1023/B:NEPL. 0000011135.19145.1b]

    Article  Google Scholar 

  • Zhang, D.Q., Chen, S.C., 2003b. Kernel-based fuzzy and possibilistic c-means clustering. Proc. Int. Conf. on Artificial Neural Network, p.122–125.

    Google Scholar 

  • Zhang, D.Q., Chen, S.C., 2004. A novel kernelized fuzzy c-means algorithm with application in medical image segmentation. Artif. Intell. Med., 32(1):37–50. [doi:10.1016/j.artmed.2004.01.012]

    Article  Google Scholar 

  • Zhao, F., 2013. Fuzzy clustering algorithms with self-tuning non-local spatial information for image segmentation. Neurocomputing, 106:115–125. [doi:10.1016/j.neucom.2012.10.022]

    Article  Google Scholar 

  • Zhou, S., Gan, J.Q., 2004. Mercer kernel, fuzzy c-means algorithm, and prototypes of clusters. LNCS, 3177: 613–618. [doi:10.1007/978-3-540-28651-6_90]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kil To Chong.

Additional information

Project supported by the National Research Foundation (NRF) of Korea (Nos. 2013009458 and 2013068127)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, X., Vista, F.P. & Chong, K.T. Fast global kernel fuzzy c-means clustering algorithm for consonant/vowel segmentation of speech signal. J. Zhejiang Univ. - Sci. C 15, 551–563 (2014). https://doi.org/10.1631/jzus.C1300320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300320

Key words

CLC number

Navigation