Skip to main content
Log in

Inertial measurement unit-camera calibration based on incomplete inertial sensor information

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of estimating the relative orientation between an inertial measurement unit (IMU) and a camera. Unlike most existing IMU-camera calibrations, the main challenge in this paper is that the information output from the IMU is incomplete. For example, only two tilt information can be read from the gravity sensor of a smart phone. Despite incomplete inertial information, there are strong restrictions between the IMU and camera coordinate systems. This paper addresses the incomplete information based IMU-camera calibration problem by exploiting the intrinsic restrictions among the coordinate transformations. First, the IMU transformation between two poses is formulated with the unknown IMU information. Then the defective IMU information is restored using the complementary visual information. Finally, the Levenberg-Marquardt (LM) algorithm is applied to estimate the optimal calibration result in noisy environments. Experiments on both synthetic and real data show the validity and robustness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajd, T., Mihelj, M., Munih, M., 2013. Introduction to Robotics. Springer, the Netherlands. [doi:10.1007/978-94-007-6101-8]

    Book  MATH  Google Scholar 

  • Chen, H.H., 1991. A screw motion approach to uniqueness analysis of head-eye geometry. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.145–151. [doi:10.1109/CVPR.1991.139677]

    Google Scholar 

  • Chow, J.C.K., Kamel, M., 1991. Finding the position and orientation of a sensor on a robot manipulator using quaternions. Int. J. Robot. Res., 10(3):240–254. [doi:10.1177/027836499101000305]

    Article  Google Scholar 

  • Fassi, I., Legnani, G., 2005. Hand to sensor calibration: a geometrical interpretation of the matrix equation AX=XB. J. Robot. Syst., 22(9):497–506. [doi:10.1002/rob.20082]

    Article  MATH  Google Scholar 

  • Gu, Z.P., 2011. A Study on Monocular Simultaneous Localization and Mapping. PhD Thesis, Chinese Academy of Sciences, Beijing, China (in Chinese).

    Google Scholar 

  • Gu, Z.P., Dong, Q.L., 2012. Monocular SLAM based on partial IMU information. J. Comput. Aid. Des. Comput. Graph., 24(2):155–160 (in Chinese).

    Google Scholar 

  • Hartley, R., Zisserman, A., 2003. Multiple View Geometry in Computer Vision. Cambridge University Press, NY, USA.

    Google Scholar 

  • Heller, J., Havlena, M., Pajdla, T., 2012. A branch-and-bound algorithm for globally optimal hand-eye calibration. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1608–1615. [doi:10.1109/CVPR.2012.6247853]

    Google Scholar 

  • Horaud, R., Dornaika, F., 1995. Hand-eye calibration. Int. J. Robot. Res., 14(3):195–210. [doi:10.1177/027836499501400301]

    Article  Google Scholar 

  • Lobo, J., Dias, J., 2007. Relative pose calibration between visual and inertial sensors. Int. J. Robot. Res., 26(6):561–575. [doi:10.1177/0278364907079276]

    Article  Google Scholar 

  • Lu, Y., Chou, J.C.K., 1995. Eight-space quaternion approach for robotic hand-eye calibration. Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, p.3316–3321. [doi:10.1109/ICSMC.1995.538297]

    Google Scholar 

  • Ma, S., Zhang, Z., 1998. Computer Vision. Science Press, Beijing, China (in Chinese).

    Google Scholar 

  • Marquardt, D.W., 1963. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math., 11(2):431–441. [doi:10.1137/0111030]

    Article  MATH  MathSciNet  Google Scholar 

  • Mirzaei, F.M., Roumeliotis, S.I., 2008. A Kalman filter-based algorithm for IMU-camera calibration: observability analysis and performance evaluation. IEEE Trans. Robot., 24(5):1143–1156. [doi:10.1109/TRO.2008.2004486]

    Article  Google Scholar 

  • Nützi, G., Weiss, S., Scaramuzza, D., et al., 2011. Fusion of IMU and vision for absolute scale estimation in monocular SLAM. J. Intell. Robot. Syst., 61(1–4):287–299. [doi:10.1007/s10846-010-9490-z]

    Article  Google Scholar 

  • Park, F.C., Martin, B.J., 1994. Robot sensor calibration: solving AX=XB on the Euclidean group. IEEE Trans. Robot. Autom., 10(5):717–721. [doi:10.1109/70.326576]

    Article  Google Scholar 

  • Seo, Y., Choi, Y.J., Lee, S.W., 2009. A branch-and-bound algorithm for globally optimal calibration of a camera-and-rotation-sensor system. Proc. 12th Int. Conf. on Computer Vision, p.1173–1178. [doi:10.1109/ICCV.2009.5459343]

    Google Scholar 

  • Shiu, Y.C., Ahmad, S., 1989. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB. IEEE Trans. Robot. Autom., 5(1):16–29. [doi:10.1109/70.88014]

    Article  Google Scholar 

  • Strobl, K.H., Hirzinger, G., 2006. Optimal hand-eye calibration. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.4647–4653. [doi:10.1109/IROS.2006.282250]

    Google Scholar 

  • Tsai, R.Y., Lenz, R.K., 1989. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. IEEE Trans Robot. Autom., 5(3):345–358. [doi:10.1109/70.34770]

    Article  Google Scholar 

  • Vicentini, F., Pedrocchi, N., Malosio, M., et al., 2011. High-accuracy hand-eye calibration from motion on manifolds. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3327–3334. [doi:10.1109/IROS.2011.6094587]

    Google Scholar 

  • Wang, Y., Ma, X., Wang, Y., et al., 2012. Location optimization of multiple distribution centers under fuzzy environment. J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 13(10):782–798. [doi:10.1631/jzus.A1200137]

    Article  Google Scholar 

  • Zhang, Z., 2000. A flexible new technique for camera calibration. IEEE Trans. Patt. Anal. Mach. Intell., 22(11): 1330–1334. [doi:10.1109/34.888718]

    Article  Google Scholar 

  • Zhao, Z., 2011. Hand-eye calibration using convex optimization. Proc. IEEE Int. Conf. on Robotics and Automation, p.2947–2952. [doi:10.1109/ICRA.2011.5979569]

    Google Scholar 

  • Zhao, Z., Liu, Y., 2009. A hand-eye calibration algorithm based on screw motions. Robotica, 27(2):217–223. [doi:10.1017/S0263574708004608]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-peng Gu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61340046, 60875050, and 60675025), the National High-Tech R&D Program (863) of China (No. 2006AA04Z247), the Science and Technology Innovation Commission of Shenzhen Municipality (Nos. JCYJ20120614152234873, CXC20110421001 0A, JCYJ20130331144631730, and JCYJ20130331144716089), and the Specialized Research Fund for the Doctoral Programme of Higher Education of China (No. 20130001110011)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhou, Yl. & Gu, Zp. Inertial measurement unit-camera calibration based on incomplete inertial sensor information. J. Zhejiang Univ. - Sci. C 15, 999–1008 (2014). https://doi.org/10.1631/jzus.C1400038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400038

Key words

CLC number

Navigation