Skip to main content
Log in

An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auger, F., Flandrin, P., 1995. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Trans. Signal Process., 43(5): 1068–1089. [doi:10.1109/78.382394]

    Article  Google Scholar 

  • Barbarossa, S., 1995. Analysis of multi-component LFM signals by a combined Wigner-Hough transform. IEEE Trans. Signal Process., 43(6):1511–1515. [doi:10.1109/78.388866]

    Article  Google Scholar 

  • Berger, C., Demissie, B., Heckenbach, J., 2010. Signal processing for passive radar using OFDM waveforms. IEEE J. Sel. Topics Signal Process., 4(1):226–238. [doi:10.1109/JSTSP.2009.2038977]

    Article  Google Scholar 

  • Celik, N., Youn, H.S., Omaki, N., et al., 2011. Experimental evaluation of passive radar approach for homeland security applications. IEEE Int. Symp. on Antennas and Propagation, p.224–227. [doi:10.1109/APS.2011.5996635]

    Google Scholar 

  • Cherniakov, M., 2008. Bistatic Radar: Emerging Technology. John Wiley & Sons, West Sussex, England, p.301–302.

    Book  Google Scholar 

  • Deng, T.D., Jiang, C.S., 2011. Evaluations of keystone transforms using several interpolation methods. IEEE CIE Int. Conf. on Radar, p.1876–1878. [doi:10.1109/CIE-Radar.2011.6159939]

    Google Scholar 

  • Dong, Y.Q., Tao, R., Zhou, S.Y., et al., 1999. Multicomponent chirp signal detection using fractional Fourier analysis. J. Syst. Eng. Electron., 10(3):57–63.

    Google Scholar 

  • Griffiths, H.D., 2011. Developments in bistatic and networked radar. IEEE CIE Int. Conf. on Radar, p.10–13. [doi:10.1109/CIE-Radar.2011.6159708]

    Google Scholar 

  • Guo, X., Sun, H.B., Wang, S.L., et al., 2002. Comments on “Discrete chirp-Fourier transform and its application to chirp rate estimation”. IEEE Trans. Signal Process., 50(12):3115. [doi:10.1109/TSP.2002.805492]

    Article  MathSciNet  Google Scholar 

  • Howland, P., 2005. Passive radar systems. IEE Proc.-Radar Sonar Navig., 152(3):105–106. [doi:10.1049/ip-rsn:20059064]

    Article  Google Scholar 

  • Howland, P., Maksimiuk, D., Reitsma, G., 2005. FM radio based bistatic radar. IEE Proc.-Radar Sonar Navig., 152(3):107–115. [doi:10.1049/ip-rsn:20045077]

    Article  Google Scholar 

  • Li, Y., Zeng, T., Long, T., et al., 2006. Range migration compensation and Doppler ambiguity resolution by keystone transform. IEEE CIE Int. Conf. on Radar, p.1–4. [doi:10.1109/ICR.2006.343404]

    Google Scholar 

  • Liu, L., Tao, R., Zhang, N., 2011. The CAF-DFRFT-KT algorithm for high-speed target detection in passive radar. Int. Conf. on Instrumentation, Measurement, Computer, Communication and Control, p.748–751. [doi:10.1109/IMCCC.2011.190]

    Google Scholar 

  • Malanowski, M., 2012. Detection and parameter estimation of manoeuvring targets with passive bistatic radar. IET Radar Sonar Navig., 6(8):739–745. [doi:10.1049/iet-rsn.2012.0072]

    Article  Google Scholar 

  • Malanowski, M., Kulpa, K., Olsen, K.E., 2011. Extending the integration time in DVB-T based passive radar. Proc. 8th European Radar Conf., p.190–193.

    Google Scholar 

  • National Standardization Committee of China, 2006. GB 20600-2006. Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System (in Chinese).

    Google Scholar 

  • Palmer, J., Palumbo, S., Summers, A., et al., 2011. An overview of an illuminator of opportunity passive radar research project and its signal processing research directions. Dig. Signal Process., 21(5):593–599. [doi:10.1016/j.dsp.2011.01.002]

    Article  Google Scholar 

  • Palmer, J., Harms, A., Searle, S.J., et al., 2013. DVB-T passive radar signal processing. IEEE Trans. Signal Process., 61(8):2116–2126. [doi:10.1109/TSP.2012.2236324]

    Article  Google Scholar 

  • Petri, D., Moscardini, C., Martorella, M., et al., 2012. Performance analysis of the batches algorithm for range-Doppler map formation in passive bistatic radar. IET Int. Conf. on Radar Systems, p.1–4. [doi:10.1049/cp.2012.1570]

    Google Scholar 

  • Xia, X.G., 2000. Discrete chirp-Fourier transform and its application to chirp rate estimation. IEEE Trans. Signal Process., 48(11):3122–3133. [doi:10.1109/78.875469]

    Article  MATH  MathSciNet  Google Scholar 

  • Yardley, H.J., 2007. Bistatic radar based on DAB illuminators: the evolution of a practical system. IEEE Radar Conf., p.688–692. [doi:10.1109/RADAR.2007.374302]

    Google Scholar 

  • Zhao, Z.X., Wan, X.R., Zhang, D.L., et al., 2013. An experimental study of HF passive bistatic radar via hybrid sky-surface wave mode. IEEE Trans. Antennas Propag., 61(1):415–424. [doi:10.1109/TAP.2012.2213062]

    Article  Google Scholar 

  • Zhu, D.Y., Li, Y., Zhu, Z.D., 2007. A keystone transform without interpolation for SAR ground moving-target imaging. IEEE Geosci. Remote Sens. Lett., 4(1):18–22. [doi:10.1109/LGRS.2006.882147]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Zhong, Lh., Hu, Dh. et al. An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar. J. Zhejiang Univ. - Sci. C 15, 1071–1085 (2014). https://doi.org/10.1631/jzus.C1400074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400074

Key words

CLC number

Navigation