Skip to main content
Log in

A review of object representation based on local features

  • Review
  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Object representation based on local features is a topical subject in the domain of image understanding and computer vision. We discuss the defects of global features in present methods and the advantages of local features in object recognition, and briefly explore state-of-the-art recognition methods using local features, especially the main approaches of local feature extraction and object representation. To clearly explain these methods, the problem of local feature extraction is divided into feature region detection, feature region description, and feature space optimization. The main components and merits of these steps are presented. Technologies for object presentation are classified into three types: vector space, sliding window, and structure relationship models. Future development trends are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, S., Awan, A., Roth, D., 2004. Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell., 26(11):1475–1490. [doi:10.1109/TPAMI.2004.108]

    Article  Google Scholar 

  • Baumberg, A., 2000. Reliable Feature Matching across Widely Separated Views. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.774–781. [doi:10.1109/CVPR.2000.855899]

    Google Scholar 

  • Bay, H., Ess, A., Tuytelaars, T., Gool, L.V., 2008. SURF: speeded up robust features. Comput. Vis. Image Understand., 110(3):346–359. [doi:10.1016/j.cviu.2007.09.014]

    Article  Google Scholar 

  • Belongie, S., Malik, J., Puchiza, J., 2002. Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell., 24(4):509–522. [doi:10.1109/34.993558]

    Article  Google Scholar 

  • Berg, A.C., Berg, T.L., Malik, J., 2005. Shape Matching and Object Recognition Using Low Distortion Correspondences. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.26–33. [doi:10.1109/CVPR.2005.320]

    Google Scholar 

  • Bilen, H., Namboodiri, V.P., van Gool, L.J., 2012. Classification with global, local and shared features. LNCS, 7476: 134–143. [doi:10.1007/978-3-642-32717-9_14]

    Google Scholar 

  • Cao, J., Chen, H.Q., Zhang, K., Niu, C.F., 2011a. Moving cast shadow detection based on region color and texture. Robot, 33(5):628–633 (in Chinese).

    Google Scholar 

  • Cao, J., Liu, Q.X., Gao, C.X., Liu, Y.S., 2011b. Object recognition with corner-based feature. Trans. Beijing Inst. Technol., 31(3):308–312 (in Chinese).

    Google Scholar 

  • Cao, J., Chen, H.Q., Mao, M.Y., 2011c. Optimization Algorithms for Local Features. Int. Conf. on Automation, Communication, Architectonics and Materials, p.921–924. [doi:10.4028/www.scientific.net/AMR.225-226.921]

    Google Scholar 

  • Chen, G.Y., Gleason, S., 2012. Ridgelet Moment Invariants for Pattern Recognition. Proc. 25th IEEE Canadian Conf. on Electrical & Computer Engineering, p.1–4. [doi:10.1109/CCECE.2012.6335061]

    Google Scholar 

  • Chen, Q., Song, Z., Hua, Y., Huang, Z.Y., Yan, S.C., 2012. Hierarchical Matching with Side Information for Image Classification. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.3426–3433. [doi:10.1109/CVPR.2012.6248083]

    Google Scholar 

  • Chia, A.Y., Rajan, D., Leung, M.K., Rahardja, S., 2012. Object recognition by discriminative combinations of line segments, ellipses, and appearance features. IEEE Trans. Pattern Anal. Mach. Intell. 34(9):1758–1772. [doi:10. 1109/TPAMI.2011.220]

    Article  Google Scholar 

  • Choi, J.Y., Ro, Y.M., Plataniotis, K.N., 2012. Color local texture features for color face recognition. IEEE Trans. Image Process., 21(3):1366–1380. [doi:10.1109/TIP.2011.2168413]

    Article  MathSciNet  Google Scholar 

  • Cristianini, N., Shawe-Taylor, J., Lodhi, H., 2002. Latent semantic kernels. J. Intell. Inf. Syst., 18(2/3):127–152. [doi:10.1023/A:1013625426931]

    Article  Google Scholar 

  • Dai, D.Q., Yuen, P.C., 2003. Regularized discriminant analysis and its application to face recognition. Pattern Recogn., 36(3):845–847. [doi:10.1016/S0031-3203(02)00092-4]

    Article  MATH  Google Scholar 

  • Dalal, N., Triggs, B., 2005. Histograms of Oriented Gradients for Human Detection. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.886–893. [doi:10.1109/CVPR.2005.177]

    Google Scholar 

  • Ding, H., Li, X.D., Zhao, H.J., Xiao, W., 2012. A New Generalized Affine Moment Invariants for Shape Retrieval and Object Recognition. Proc. IEEE Int. Symp. on Instrumentation and Control Technology, p.137–142. [doi:10. 1109/ISICT.2012.6291609]

    Google Scholar 

  • Fergus, R., Perona, P., Zisserman, A., 2005. A Sparse Object Category Model for Efficient Learning and Exhaustive Recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.380–387. [doi:10.1109/CVPR.2005.47]

    Google Scholar 

  • Fernando, B., Fromont, E., Muselet, D., Sebban, M., 2012. Discriminative Feature Fusion for Image Classification. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.3434–3441. [doi:10.1109/CVPR.2012.6248084]

    Google Scholar 

  • Geng, X., Zhan, D.C., Zhou, Z.H., 2005. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans. Syst. Man Cybern. B, 35(6):1098–1107. [doi:10.1109/TSMCB.2005.850151]

    Article  Google Scholar 

  • Guyon, I., Watson, J., Barnhill, S., Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Mach. Learn., 46(1–3):389–422. [doi:10.1023/A:1012487302797]

    Article  MATH  Google Scholar 

  • Hancock, T., Mamitsuka, H., 2012. Boosted network classifiers for local feature selection. IEEE Trans. Neur. Networks Learn. Syst., 23(11):1767–1778. [doi:10.1109/TNNLS.2012.2214057]

    Article  Google Scholar 

  • He, R., Tan, T.N., Wang, L., Zheng, W.S., 2012. Regularized Correntropy for Robust Feature Selection. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2504–2511. [doi:10.1109/CVPR.2012.6247966]

    Google Scholar 

  • Hyvarinen, A., Oja, E., 2000. Independent component analysis: algorithms and applications. Neur. Networks, 13(4–5): 411–430. [doi:10.1016/S0893-6080(00)00026-5]

    Article  Google Scholar 

  • Javed, K., Babri, H.A., Saeed, M., 2012. Feature selection based on class-dependent densities for high-dimensional binary data. IEEE Trans. Knowl. Data Eng., 24(3):465–477. [doi:10.1109/TKDE.2010.263]

    Article  Google Scholar 

  • Jurie, F., Triggs, B., 2005. Creating Efficient Codebooks for Visual Recognition. Proc. 10th IEEE Int. Conf. on Computer Vision, p.604–610. [doi:10.1109/ICCV.2005.66]

    Google Scholar 

  • Kadir, T., Zisserman, A., Brady, M., 2004. An affine invariant salient region detector. LNCS, 3021:228–241. [doi:10. 1007/978-3-540-24670-1_18]

    Google Scholar 

  • Ke, Y., Sukthankar, R., 2004. PCA-SIFT: a More Distinctive Representation for Local Image Descriptors. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.511–517.

    Google Scholar 

  • Lazebnik, S., Schmid, C., Ponce, J., 2003. A Sparse Texture Representation Using Affine-Invariant Regions. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.319–324. [doi:10.1109/CVPR.2003.1211486]

    Google Scholar 

  • Leibe, B., Leonardis, A., Schiele, B., 2008. Robust object detection with interleaved categorization and segmentation. Int. J. Comput. Vis., 77(1–3):259–289. [doi:10.1007/s11263-007-0095-3]

    Article  Google Scholar 

  • Li, C.S., Liu, Q.S., Liu, J., Lu, H.Q., 2012. Learning Ordinal Discriminative Features for Age Estimation. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2570–2577. [doi:10.1109/CVPR.2012.6247975]

    Google Scholar 

  • Liu, H.W., Sun, J.G., Liu, L., Zhang, H.J., 2009. Feature selection with dynamic mutual information. Pattern Recogn., 42(7):1330–1339. [doi:10.1016/j.patcog.2008.10.028]

    Article  MathSciNet  MATH  Google Scholar 

  • Lowe, D., 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60(2):91–110. [doi:10.1023/B:VISI.0000029664.99615.94]

    Article  Google Scholar 

  • Matas, J., Chum, O., Urban, M., Pajdla, T., 2004. Robust wide baseline stereo from maximally stable extremal regions. Image Vis. Comput., 22(10):761–767. [doi:10.1016/j. imavis.2004.02.006]

    Article  Google Scholar 

  • Mikolajczyk, K., Schmid, C., 2001. Indexing Based on Scale Invariant Interest Points. Proc. 8th Int. Conf. on Computer Vision, p.525–531. [doi:10.1109/ICCV.2001.937561]

    Google Scholar 

  • Mikolajczyk, K., Schmid, C., 2004. Scale & affine invariant interest point detectors. Int. J. Comput. Vis., 60(1):63–86. [doi:10.1023/B:VISI.0000027790.02288.f2]

    Article  Google Scholar 

  • Mikolajczyk, K., Schmid, C., 2005. A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell., 27(10):1615–1630. [doi:10.1109/TPAMI.2005.188]

    Article  Google Scholar 

  • Mikolajczyk, K., Leibe, B., Schiele, B., 2005a. Local Features for Object Class Recognition. Proc. 10th IEEE Int. Conf. on Computer Vision, p.1792–1799. [doi:10.1109/ICCV.2005.146]

    Google Scholar 

  • Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., van Gool, L., 2005b. A comparison of affine region detectors. Int. J. Comput. Vis., 65(1–2):43–72. [doi:10.1007/s11263-005-3848-x]

    Article  Google Scholar 

  • Mikolajczyk, K., Leibe, B., Schiele, B., 2006. Multiple Object Class Detection with a Generative Model. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, p.26–36. [doi:10.1109/CVPR.2006.202]

    Google Scholar 

  • Mohan, A., Papageorgiou, C., Poggio, T., 2001. Example-based object detection in images by components. IEEE Trans. Pattern Anal. Mach. Intell., 23(4):349–361. [doi:10. 1109/34.917571]

    Article  Google Scholar 

  • Moosmann, F., Nowak, E., Jurie, F., 2008. Randomized clustering forests for image classification. IEEE Trans. Pattern Anal. Mach. Intell., 30(9):1632–1646. [doi:10.1109/TPAMI.2007.70822]

    Article  Google Scholar 

  • Nakayama, H., Harada, T., Kuniyoshi, Y., 2010. Global Gaussian Approach for Scene Categorization Using Information Geometry. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2336–2343. [doi:10.1109/CVPR.2010.5539921]

    Google Scholar 

  • Neshatian, K., Zhang, M., 2009. Genetic programming for feature subset ranking in binary classification problems. LNCS, 5481:121–132. [doi:10.1007/978-3-642-01181-8_11]

    Google Scholar 

  • Nowak, E., Jurie, F., Triggs, B., 2006. Sampling strategies for bag-of-features image classification. LNCS, 3954:490–503. [doi:10.1007/11744085_38]

    Google Scholar 

  • Ohba, K., Ikeuchi, K., 1997. Detectability, uniqueness, and reliability of eigen windows for stable verification of partially occluded objects. IEEE Trans. Pattern Anal. Mach. Intell., 19(9):1043–1047. [doi:10.1109/34.615453]

    Article  Google Scholar 

  • Pan, H., Li, X.B., Jin, L.Z., Xia, L.Z., 2011. Object description and recognition using multiscale geometric analysis. J. Infrar. Millim. Waves, 30(1):85–90.

    Article  Google Scholar 

  • Papageorgiou, C., Poggio, T., 2000. A trainable system for object detection. Int. J. Comput. Vis., 38(1):15–33. [doi:10.1023/A:1008162616689]

    Article  MATH  Google Scholar 

  • Perronnin, F., Dance, C., 2007. Fisher Kernels on Visual Vocabularies for Image Categorization. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8. [doi:10.1109/CVPR.2007.383266]

    Google Scholar 

  • Redondo-Cabrera, C., Lopez-Sastre, R.J., Acevedo-Rodriguez, J., Maldonado-Bascon, S., 2012. SURFing the Point Clouds: Selective 3D Spatial Pyramids for Category-Level Object Recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.3458–3465. [doi:10.1109/CVPR.2012.6248087]

    Google Scholar 

  • Salton, G., Wong, A., Yang, C.S., 1975. A vector space model for automatic indexing. Commun. ACM, 18(11):613–620. [doi:10.1145/361219.361220]

    Article  MATH  Google Scholar 

  • Saul, L.K., Roweis, S.T., 2003. Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res., 4(2):119–155.

    MathSciNet  Google Scholar 

  • Schaffalitzky, F., Zisserman, A., 2002. Multi-view matching for unordered image sets, or “How do I organize my holiday snaps?”. LNCS, 2350:414–431. [doi:10.1007/3-540-47969-4_28]

    Google Scholar 

  • Shlens, J., 2009. A Tutorial on Principal Component Analysis. Center for Neural Science, New York University, New York City, NY. Available from 〈http://www.snl.salk.edu/~shlens/pca.pdf

    Google Scholar 

  • Tong, S., Koller, D., 2002. Support vector machine active learning with applications to text classification. J. Mach. Learn. Res., 2:45–66.

    MATH  Google Scholar 

  • van Gool, L., Moons, T., Ungureanu, D., 1996. Affine/photometric invariants for planar intensity patterns. LNCS, 1064:642–651. [doi:10.1007/BFb0015574]

    Google Scholar 

  • Viola, P., Jones, M.J., 2004. Robust real-time face detection. Int. J. Comput. Vis., 57(2):137–154. [doi:10.1023/B:VISI.0000013087.49260.fb]

    Article  Google Scholar 

  • Wang, Y.J., Liu, X.B., Jia, Y.D., 2012. Visual word soft-histogram for image representation. J. Softw., 23(7):1787–1795 (in Chinese).

    Article  MATH  Google Scholar 

  • Weber, M., Welling, M., Perona, P., 2000. Unsupervised Learning of Models for Recognition. European Conf. on Computer Vision, p.18–32.

    Google Scholar 

  • Yang, J., Yang, J.Y., 2003. Why can LDA be performed in PCA transformed space. Pattern Recogn., 36(2):563–566. [doi:10.1016/S0031-3203(02)00048-1]

    Article  Google Scholar 

  • Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y., 2004. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell., 26(1):131–137. [doi:10.1109/TPAMI.2004.1261097]

    Article  Google Scholar 

  • Yang, J., Zhang, D., Yong, X., Yang, J.Y., 2005. Two-dimensional discriminant transform for face recognition. Pattern Recogn., 38(7):1125–1129. [doi:10.1016/j.patcog.2004.11.019]

    Article  MATH  Google Scholar 

  • Yu, L., Liu, H., 2004. Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res., 5:1205–1224.

    MATH  Google Scholar 

  • Zeng, L., Gu, D.L., 2012. A SIFT feature descriptor based on sector area partitioning. Acta Autom. Sin., 38(9):1513–1519 (in Chinese).

    Google Scholar 

  • Zhang, L.B., Wang, C.H., Xiao, B.H., Shao, Y.X., 2012. Image representation using bag-of-phrases. Acta Autom. Sin., 38(1):46–54 (in Chinese).

    Article  Google Scholar 

  • Zhang, L.J., Chen, C., Bu, J.J., He, X.F., 2012. A unified feature and instance selection framework using optimum experimental design. IEEE Trans. Image Process., 21(5): 2379–2388. [doi:10.1109/TIP.2012.2183879]

    Article  MathSciNet  Google Scholar 

  • Zhu, Q., Avidan, S., Yeh, M.C., Cheng, K.T., 2006. Fast Human Detection Using a Cascade of Histograms of Oriented Gradients. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1491–1498. [doi:10.1109/CVPR.2006.119]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Cao.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2012CB821206), the National Natural Science Foundation of China (No. 71201004), the Scientific Research Common Program of Beijing Municipal Commission of Education (No. KM201310011009), and the Funding Project for Innovation on Science, Technology and Graduate Education in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (Nos. PXM2012_014213_000037 and PXM2012_014213_000079)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Mao, Dh., Cai, Q. et al. A review of object representation based on local features. J. Zhejiang Univ. - Sci. C 14, 495–504 (2013). https://doi.org/10.1631/jzus.CIDE1303

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.CIDE1303

Key words

CLC number

Navigation