Skip to main content
Log in

Statistical learning based facial animation

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

To synthesize real-time and realistic facial animation, we present an effective algorithm which combines image- and geometry-based methods for facial animation simulation. Considering the numerous motion units in the expression coding system, we present a novel simplified motion unit based on the basic facial expression, and construct the corresponding basic action for a head model. As image features are difficult to obtain using the performance driven method, we develop an automatic image feature recognition method based on statistical learning, and an expression image semi-automatic labeling method with rotation invariant face detection, which can improve the accuracy and efficiency of expression feature identification and training. After facial animation redirection, each basic action weight needs to be computed and mapped automatically. We apply the blend shape method to construct and train the corresponding expression database according to each basic action, and adopt the least squares method to compute the corresponding control parameters for facial animation. Moreover, there is a pre-integration of diffuse light distribution and specular light distribution based on the physical method, to improve the plausibility and efficiency of facial rendering. Our work provides a simplification of the facial motion unit, an optimization of the statistical training process and recognition process for facial animation, solves the expression parameters, and simulates the subsurface scattering effect in real time. Experimental results indicate that our method is effective and efficient, and suitable for computer animation and interactive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanz, V., Basso, C., Poggio, T., Vetter, T., 2003. Reanimating faces in images and video. Comput. Graph. For., 22(3): 641–650. [doi:10.1111/1467-8659.t01-1-00712]

    Google Scholar 

  • Blinn, J.F., 1977. Models of light reflection for computer synthesized pictures. ACM SIGGRAPH Comput. Graph., 11(2):192–198. [doi:10.1145/965141.563893]

    Article  Google Scholar 

  • Buck, I., Finkelstein, A., Jacobs, C., Klein, A., Salesin, D.H., Seims, J., Szeliski, R., Toyama, K., 2006. Performance-Driven Hand-Drawn Animation. Proc. 1st Int. Symp. on Non-photorealistic Animation and Rendering, p.101–108. [doi:10.1145/340916.340929]

    Google Scholar 

  • Chai, X.J., Shan, S.G., Gao, W., Chen, X.L., 2005. Examplebased learning for automatic face alignment. J. Softw., 16(5):718–726 (in Chinese).

    Article  Google Scholar 

  • Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J., 1995. Active shape models—their training and application. Comput. Vis. Image Understand., 61(1):38–59. [doi:10.1006/cviu.1995.1004]

    Article  Google Scholar 

  • Cootes, T.F., Edwards, G.J., Taylor, C.J., 2001. Active Appearance Models. IEEE Trans. Pattern Anal. Mach. Intell., 23(6):681–685. [doi:10.1109/34.927467]

    Article  Google Scholar 

  • Deng, Z.G., Chiang, P.Y., Fox, P., Neumann, U., 2006. Animating Blend Shape Faces by Cross-Mapping Motion Capture Data. Proc. Symp. on Interactive 3D Graphics and Games, p.43–48. [doi:10.1145/1111411.1111419]

    Google Scholar 

  • d’Eon, E., Luebke, D., Enderton, E., 2007. Efficient Rendering of Human Skin. Proc. 18th Eurographics Conf. on Rendering Techniques, p.147–157. [doi:10.2312/EGWR/EGSR07/147-157]

    Google Scholar 

  • Ekman, P., Friesen, W.V., Hager, J.C., 2002. Facial Action Coding System: the Manual. A Human Face. Research Nexus, Salt Lake City, p.1–197.

    Google Scholar 

  • Guenter, B., Grimm, C., Wood, D., Malvar, H., Pighin, F., 2006. Making Faces. ACM SIGGRAPH, p.55–66. [doi:10.1145/1185657.1185858]

    Google Scholar 

  • Jimenez, J., Sundstedt, V., Gutierrez, D., 2009. Screen-space perceptual rendering of human skin. ACM Trans. Appl. Percept., 6(4), Article 23. [doi:10.1145/1609967.1609970]

    Google Scholar 

  • Lance, W., 1990. Performance-Driven Facial Animation. ACM SIGGRAPH, p.235–242. [doi:10.1145/97879.97906]

    Google Scholar 

  • Lee, Y.C., Terzopoulos, D., Waters, K., 1995. Realistic Modeling for Facial Animation. Proc. 22nd Annual Conf. on Computer Graphics and Interactive Techniques, p.55–62. [doi:10.1145/218380.218407]

    Google Scholar 

  • Little, A.C., Hancock, P.J.B., DeBruine, L.M., Jones, B.C., 2012. Adaptation to antifaces and the perception of correct famous identity in an average face. Front. Psychol., 3:19. [doi:10.3389/fpsyg.2012.00019]

    Article  Google Scholar 

  • Matthews, I., Baker, S., 2004. Active appearance models revisited. Int. J. Comput. Vis., 60(2):135–164. [doi:10.1023/B:VISI.0000029666.37597.d3]

    Article  Google Scholar 

  • Parke, F.I., 1972. Computer Generated Animation of Faces. Proc. ACM Annual Conf., p.451–457. [doi:10.1145/800 193.569955]

    Google Scholar 

  • Penner, E., Borshukov, G., 2011. Pre-integrated Skin Shading. In: Engel, W. (Ed.), GPU Pro 2: Advanced Rendering Techniques. A K Peters/CRC Press, p.41–54. [doi:10.1201/b11325-1]

    Google Scholar 

  • Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.H., 2005. Synthesizing Realistic Facial Expressions from Photographs. ACM SIGGRAPH, p.75–84. [doi:10.1145/1198555.1198589]

    Google Scholar 

  • Viola, P., Jones, M., 2001. Rapid Object Detection Using a Boosted Cascade of Simple Features. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.511–518. [doi:10.1109/cvpr.2001.990517]

    Google Scholar 

  • Weise, T., Bouaziz, S., Li, H., Pauly, M., 2011. Realtime performance-based facial animation. ACM Trans. Graph., 30(4), Article 77, p.1–10. [doi:10.1145/2010324.1964972]

    Article  Google Scholar 

  • Yao, J.F., Chen, Q., 2008. Survey on computer facial expression animation technology. Appl. Res. Comput., 25(11): 3233–3237. [doi:10.3969/j.issn.1001-3695.2008.11.009]

    Google Scholar 

  • Zhang, Q.S., Chen, G.L., 2003. Realistic 3D human facial animation. J. Softw., 14(3):643–650 (in Chinese).

    Google Scholar 

  • Zhang, Q.S., Liu, Z.C., Guo, B.N., Demetri, T., Shum, H.Y., 2006. Geometry-driven photorealistic facial expression synthesis. IEEE Trans. Visual. Comput. Graph., 12(1):48–60. [doi:10.1109/TVCG.2006.9]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Zhang.

Additional information

Project supported by the 2013 Annual Beijing Technological and Cultural Fusion for Demonstrated Base Construction and Industrial Nurture (No. Z131100000113007), and the National Natural Science Foundation of China (Nos. 61202324, 61271431, and 61271430)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Ma, G., Meng, W. et al. Statistical learning based facial animation. J. Zhejiang Univ. - Sci. C 14, 542–550 (2013). https://doi.org/10.1631/jzus.CIDE1307

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.CIDE1307

Key words

CLC number

Navigation