Skip to main content
Log in

Modeling of hydraulic turbine systems based on a Bayesian-Gaussian neural network driven by sliding window data

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

In this paper, a novel Bayesian-Gaussian neural network (BGNN) is proposed and applied to on-line modeling of a hydraulic turbine system (HTS). The new BGNN takes account of the complex nonlinear characteristics of HTS. Two redefined training procedures of the BGNN include the off-line training of the threshold matrix parameters, optimized by swarm optimization algorithms, and the on-line BGNN predictive application driven by the sliding window data method. The characteristics models of an HTS are identified using the new BGNN method and simulation results are presented which show the effectiveness of the BGNN in addressing modeling problems of HTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caccavale, F., Pierri F., Villani, L., 2008. Adaptive observer for fault diagnosis in nonlinear discrete-time systems. J. Dynam. Syst. Meas. Control, 130(2):021005. [doi:10.1115/1.2837310]

    Article  Google Scholar 

  • Chang, J., Xiao, Z.H., Wang, S.Q., 2003. Neural Network Predict Control for the Hydroturbine Generator Set. Proc. 2nd Int. Conf. on Machine Learning and Cybernetics, p.540–543.

  • Chen, T.P., Chen, H., 1993. Approximations of continuous functionals by neural networks with application to dynamic systems. IEEE Trans. Neur. Networks, 4(6):910–918. [doi:10.1109/72.286886]

    Article  Google Scholar 

  • Chen, Y.H., Ye, L.Q., Cai, W.Y., 2003. Modeling of hydro-turbine hill chart by neural network. Chin. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.), 31(6):68–70 (in Chinese).

    Google Scholar 

  • Fang, Y.J., Liu, Y.J., 2008. Design of Automated Control System Based on Improved E. coli Foraging Optimization. Proc. IEEE Int. Conf. on Automation and Logistics, p.238–243. [doi:10.1109/ICAL.2008.4636153]

  • Huang, C.L., Wang, C.J., 2006. A GA-based feature selection and parameters optimization for support vector machines. Exp. Syst. Appl., 31(2):231–240. [doi:10.1016/j.eswa.2005.09.024]

    Article  Google Scholar 

  • Ihme, M., Marsden, A.L., Pitsch, H., 2008. Generation of optimal artificial neural networks using a pattern search algorithm: application to approximation of chemical systems. Neur. Comput., 20(2):573–601. [doi:10.1162/neco.2007.08-06-316]

    Article  MATH  MathSciNet  Google Scholar 

  • Jung, S.M., Ghaboussi, J., 2006. Neural network constitutive model for rate-dependent materials. Comput. & Struct., 84(15–16):955–963. [doi:10.1016/j.compstruc.2006.02.015]

    Article  Google Scholar 

  • Li, J.X., Sun, M.F., Yue, X.N., Zuo, G.T., 2009. Transient process research of hydraulic unit based on Matlab. GX Water Res. Hydr. Eng., 38(1):77–81 (in Chinese).

    Google Scholar 

  • Liu, B., Wang, L., Jin, Y.H., 2007. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans. Syst. Man Cybern., 31(1):18–27. [doi:10.1109/TSMCB.2006.883272]

    Google Scholar 

  • Pei, J.S., Mai, E.C., 2008. Constructing multilayer feedforward neural networks to approximate nonlinear functions in engineering mechanics applications. J. Appl. Mech., 75(6):061002. [doi:10.1115/1.2957600]

    Article  Google Scholar 

  • Sarimveis, H., 2000. Training algorithms and learning abilities of three different types of artificial neural networks. Syst. Anal. Model. Simul., 38(3):555–581.

    MATH  Google Scholar 

  • Shen, Z.Y., 1996. Analysis of Hydraulic Turbine Governing System. Water Resources and Electric Power Press, Beijing, China (in Chinese).

    Google Scholar 

  • Shirvany, Y., Hayati, M., Moradian, R., 2008. Numerical solution of the nonlinear schrodinger equation by feedforward neural networks. Commun. Nonl. Sci. Numer. Simul., 13(10):2132–2145. [doi:10.1016/j.cnsns.2007.04.024]

    Article  MathSciNet  Google Scholar 

  • Wang, S.Q., Liu, H., Zhang Z.P., Liu S.Y., 2008. Research on the Intelligent Control Strategy based on FNNC and GAs for Hydraulic Turbine Generating Units. Proc. 7th World Congress on Intelligent Control and Automation, p.5569–5573. [doi:10.1109/WCICA.2008.4593836]

  • Xiao, Z.H., Wang, S.Q., Zeng, H.T., Yuan, X.H., 2006. Identifying of Hydraulic Turbine Generating Unit Model Based on Neural Network. Proc. 6th Int. Conf. on Intelligent Systems Design and Applications, p.113–117. [doi:10.1109/ISDA.2006.172]

  • Ye, H.W., Nicolai, R., Reh, L., 1998. A Bayesian-Gaussian neural network and its application in process engineering. Chem. Eng. Process, 37(5):439–449. [doi:10.1016/S0255-2701(98)00051-8]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-jian Liu.

Additional information

Project (Nos. 60704024 and 60772107) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Yj., Fang, Yj. & Zhu, Xm. Modeling of hydraulic turbine systems based on a Bayesian-Gaussian neural network driven by sliding window data. J. Zhejiang Univ. - Sci. C 11, 56–62 (2010). https://doi.org/10.1631/jzus.C0910176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910176

Key words

CLC number

Navigation