Skip to main content
Log in

Feedback analysis and design of inductive power links driven by Class-E amplifiers with variable coupling coefficients

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

The efficiency of inductive power links driven by Class-E amplifiers may deteriorate due to variation in the coupling coefficient when the relative position of the radio frequency (RF) coils changes. To solve this problem, a new design methodology of power links is presented in this paper. The aim of the new design is to use the feedback signal, which is a phase difference between the driving signal and the output current of the Class-E amplifier, to adjust the duty cycle and angular frequency of the driving signal to maintain the optimum state of the inductive power link, and to adjust the supply voltage to keep the output power constant when the coupling coefficient of the RF coils changes. The parameter adjustments with respect to the coupling coefficient and the feedback signal are derived from the design equation of the inductive power link. To validate the feedback control rules, a prototype of the inductive power link was constructed, and its performance validated with the coupling coefficient set at 0.2 and a duty cycle of 0.5. The experimental results showed that, by adjusting the duty cycle, the angular frequency, and the supply voltage, the power link can be kept in optimal operation with a constant output power when the coupling coefficient changes from 0.2 to 0.1 to 0.25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, M.W., Rahul, S., 2007. Feedback analysis and design of RF power links for low-power bionic systems. IEEE Trans. Biomed. Circ. Syst., 1(1):28–38. [doi:10.1109/TBCAS.2007.893180]

    Article  Google Scholar 

  • Donaldson, N.N., Perkins, T.A., 1983. Analysis of resonant coupled coils in the design of radio frequency transcutaneous links. Med. Biol. Eng. Comput., 21(5): 612–627. [doi:10.1007/BF02442388]

    Article  Google Scholar 

  • Kazimierczuk, M.K., Czarkowski, D., 1995. Resonant Power Converters. Wiley, New York.

    Google Scholar 

  • Kendir, G.A., Liu, W., Wang, G., Sivaprakasam, M., Bashirullash, R., Humayun, M.S., Weiland, J.D., 2005. An optimal design methodology for inductive power link with Class-E amplifier. IEEE Trans. Circ. Syst.-I, 52(5):857–868. [doi:10.1109/TCSI.2005.846208]

    Article  Google Scholar 

  • Kessler, D.J., Kazimierczuk, M.K., 2004. Power losses and efficiency of Class-E power amplifier at any duty ratio. IEEE Trans. Circ. Syst.-I, 51(9):1675–1689. [doi:10.1109/TCSI.2004.834505]

    Article  Google Scholar 

  • Ko, W.H., Liang, S.P., Fung, C.D.F., 1977. Design of radio-frequency powered coils for implant instruments. Med. Biol. Eng., 15(6):634–640. [doi:10.1007/BF02457921]

    Article  Google Scholar 

  • Lenaerts, B., Puers, R., 2007. An inductive power link for a wireless endoscope. Biosens. & Bioelectron., 22(7):1390–1395. [doi:10.1016/j.bios.2006.06.015]

    Article  Google Scholar 

  • Lenaerts, B., Puers, R., 2008. Automatic inductance compensation for Class-E driven flexible coils. Sens. & Actuat. A, 145–146:154–160. [doi:10.1016/j.sna.2007.11.011]

    Article  Google Scholar 

  • Mury, T., Fusco, V.F., 2006. Analysis and synthesis of pHEMT class-E amplifiers with shunt inductor including ON-state active-device resistance effects. IEEE Trans. Circ. Syst.-I, 53(7):1556–1564. [doi:10.1109/TCSI.2006.876416]

    Article  Google Scholar 

  • Raab, F.H., 1977. Idealized operation of the Class-E tuned power amplifier. IEEE Trans. Circ. Syst., 24(12):725–735. [doi:10.1109/TCS.1977.1084296]

    Article  Google Scholar 

  • Sarpeshkar, R., Salthouse, C., Sit, J.J., Baker, M.W., Zhak, S.M., Lu, T.K.T., Turicchia, L., Balster, S., 2005. An ultra-low-power programmable analog bionic ear processor. IEEE Trans. Biomed. Eng., 52(4):711–727. [doi:10.1109/TBME.2005.844043]

    Article  Google Scholar 

  • Sokal, N.O., Sokal, A.D., 1975. Class E: a new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Sol.-State Circ., 10(3):168–176. [doi:10.1109/JSSC.1975.1050582]

    Article  Google Scholar 

  • Wang, G., Liu, W., Sivaprakasam, M., Kendir, G.A., 2005. Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans. Circ. Syst.-I, 52(10):2109–2117. [doi:10.1109/TCSI.2005.852923]

    Article  Google Scholar 

  • Yang, T.L., Zhao, C.Y., Zhang, J.Y., Chen, D.Y., 2009. Power Loss and Efficiency of Transcutaneous Energy Transmission System with Class-E Power Amplifier at Any Duty Ratio. Int. Symp. on Signals, Circuits and Systems, p.425–428. [doi:10.1109/ISSCS.2009.5206221]

  • Zan, P., Yan, G., Liu, H., Luo, N., Zhao, Y., 2007. Adaptive transcutaneous power delivery for an artificial anal sphincter system. J. Med. Eng. Technol., 33(2):136–141. [doi:10.1080/03091900801943205]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-yue Chen.

Additional information

Project (No. 60271031) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Tl., Zhao, Cy. & Chen, Dy. Feedback analysis and design of inductive power links driven by Class-E amplifiers with variable coupling coefficients. J. Zhejiang Univ. - Sci. C 11, 629–636 (2010). https://doi.org/10.1631/jzus.C0910607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C0910607

Key words

CLC number

Navigation