Skip to main content
Log in

Centroid-based sifting for empiricalmode decomposition

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

A novel sifting method based on the concept of the ‘local centroids’ of a signal is developed for empirical mode decomposition (EMD), with the aim of reducing the mode-mixing effect and decomposing those modes whose frequencies are within an octave. Instead of directly averaging the upper and lower envelopes, as suggested by the original EMD method, the proposed technique computes the local mean curve of a signal by interpolating a set of ‘local centroids’, which are integral averages over local segments between successive extrema of the signal. With the ‘centroid’-based sifting, EMD is capable of separating intrinsic modes of oscillatory components with their frequency ratio ν even up to 0.8, thus greatly mitigating the effect of mode mixing and enhancing the frequency resolving power. Inspection is also made to show that the integral property of the ‘centroid’-based sifting can make the decomposition more stable against noise interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cohen, L., 1989. Time-frequency distributions-a review. Proc. IEEE, 77(7):941–981. [doi:10.1109/5.30749]

    Article  Google Scholar 

  • Datig, M., Schlurmann, T., 2004. Performance and limitations of the Hilbert-Huang Transformation (HHT) with an application to irregular water waves. Ocean Eng., 31(14–15):1783–1834. [doi:10.1016/j.oceaneng.2004.03.007]

    Article  Google Scholar 

  • Deering, R., 2006. Final-Scale Analysis of Speech Using Empirical Mode Decomposition: Insight and Applications. PhD Thesis, Duke University, Durham, America.

    Google Scholar 

  • Deering, R., Kaiser, J.F., 2005. The Use of a Masking Signal to Improve Empirical Mode Decomposition. Proc. IEEE ICASSP, 4:485–488. [doi:10.1109/ICASSP.2005.1416051]

    Google Scholar 

  • Hlawatsch, F., Boudreaux-Bartels, G.F., 1992. Linear and quadratic time-frequency signal representation. IEEE Signal Process. Mag., 9(2):21–67. [doi:10.1109/79.127284]

    Article  Google Scholar 

  • Huang, N.E., Wu, Z., 2007. An adaptive data analysis method for nonlinear and nonstationary time series: the empirical mode decomposition and Hilbert spectral analysis. Wavelet Anal. Appl., 1(4):363–376. [doi:10.1007/978-3-7643-7778-6_25]

    Article  Google Scholar 

  • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear non-stationary time series analysis. Proc. Roy. Soc. A, 454(1971):903–995.

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, N.E., Shen, Z., Long, S., 1999. A new view of nonlinear water waves: the Hilbert Spectrum. Ann. Rev. Fluid Mech., 31:417–459. [doi:10.1146/annurev.fluid.31.1.417]

    Article  MathSciNet  Google Scholar 

  • Huang, N.E., Chern, C.C., Huang, K., Salvino, L.W., Long, S., Fan, K.L., 2001. A new spectral representation of earthquake data: Hilbert spectral analysis of Station TCU129, Chi-Chi, Taiwan, 21 September 1999. Bull. Seismol. Soc. Am., 91(5):1310–1338. [doi:10.1785/0120000735]

    Article  Google Scholar 

  • Kopsinis, Y., McLaughlin, S., 2008a. Investigation and performance enhancement of the empirical mode decomposition method based on a heuristic search optimization approach. IEEE Trans. Signal Process., 56(1):1–13. [doi:10.1109/TSP.2007.901155]

    Article  MathSciNet  Google Scholar 

  • Kopsinis, Y., McLaughlin, S., 2008b. Improved EMD using doubly-iterative sifting and high order spline interpolation. EURASIP J. Adv. Signal Process., 2008:1–8. [doi:10.1155/2008/128293]

    Article  MathSciNet  Google Scholar 

  • Laila, D.S., Messina, A.R., Pal, B.C., 2009. A refined Hilbert-Huang transform with applications to interarea oscillation monitoring. IEEE Trans. Power Syst., 24(2):610–620. [doi:10.1109/TPWRS.2009.2016478]

    Article  Google Scholar 

  • Liang, H., Lin, Z., McCallum, R.W., 2000. Artifact reduction in electrogastrograms based on the empirical mode decomposition. Med. Biol. Eng. Comput., 38(1):35–41. [doi:10.1007/BF02344686]

    Article  Google Scholar 

  • Messina, A.R., 2009. Inter-Area Oscillations in Power Systems: a Nonlinear and Nonstationary Perspective. Springer, Berlin, Germany. [doi:10.1007/978-0-387-89530-7]

    Book  Google Scholar 

  • Rilling, G., Flandrin, P., 2008. One or two frequencies? The empirical mode decomposition answers. IEEE Trans. Signal Process., 56(1):85–95. [doi:10.1109/TSP.2007. 906771]

    Article  MathSciNet  Google Scholar 

  • Schlurmann, T., Dose, T., Schimmels, S., 2001. Characteristic Modes of the ‘Adreanov Tsunami’ Based on the Hilbert-Huang Transformation. Proc. 4th Int. Symp. on Ocean Wave Measurement and Analysis, 2:1525–1534. [doi:10.1061/40604(273)154]

    Google Scholar 

  • Senroy, N., Suryanarayanan, S., Ribeiro, P.F., 2007. An improved Hilbert-Huang method for analysis of timevarying waveforms in power quality. IEEE Trans. Power Syst., 22(4):1843–1850. [doi:10.1109/TPWRS.2007.907542]

    Article  Google Scholar 

  • Xuan, B., Xie, Q., Peng, S., 2007. EMD sifting based on bandwidth. IEEE Signal Process. Lett., 14(8):537–540. [doi:10.1109/LSP.2007.891833]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Hong.

Additional information

Project supported by the National Natural Science Foundation of China (No. 10574070) and the State Key Laboratory Foundation of China (No. 9140C240207060C24)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, H., Wang, Xl., Tao, Zy. et al. Centroid-based sifting for empiricalmode decomposition. J. Zhejiang Univ. - Sci. C 12, 88–95 (2011). https://doi.org/10.1631/jzus.C1000037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1000037

Key words

CLC number

Navigation