Skip to main content
Log in

Recent advances in the artificial endocrine system

  • Review
  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

The artificial endocrine system (AES) is a new branch of natural computing which uses ideas and takes inspiration from the information processing mechanisms contained in the mammalian endocrine system. It is a fast growing research field in which a variety of new theoretical models and technical methods have been studied for dealing with complex and significant problems. An overview of some recent advances in AES modeling and its applications is provided in this paper, based on the major and latest works. This review covers theoretical modeling, combinations of algorithms, and typical application fields. A number of challenges that can be undertaken to help move the field forward are discussed according to the current state of the AES approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avila-Garcia, O., Canamero, L., 2004. Using Hormonal Feedback to Modulate Action Selection in a Competitive Scenario. From Animals to Animats 8: Proc. Eighth Int. Conf. on Simulation of Adaptive Behavior, p.243–252.

  • Avila-Garcia, O., Canamero, L., 2005. Hormonal Modulation of Perception in Motivation-Based Action Selection Architectures. AISB Symp., p.9–16.

  • Balasubramaniam, S., Botvich, D., Donnelly, W., Strassner, J., 2007. A Biologically Inspired Policy Based Management System for Survivability in Autonomic Networks. Fourth Int. Conf. on Broadband Communications, Networks and Systems, p.160–168. [doi:10.1109/BROADNETS.2007.4550420]

  • Besedovsky, H.O., Del Rey, A., 1996. Immune-neuroendocrine interactions: facts and hypotheses. Endocr. Rev., 17(1):64–102. [doi:10.1210/edrv-17-1-64]

    Google Scholar 

  • Besedovsky, H.O., Sorkin, E., 1977. Network of immune-neuroendocrine interactions. Clin. Exp. Immunol., 27(1):1–12.

    Google Scholar 

  • Besedovsky, H.O., Del Rey, A.E., Sorkin, E., 1985. Immune-neuroendocrine interactions. J. Immunol., 135(Suppl 2):750–754.

    Google Scholar 

  • Brinkschulte, U., von Renteln, A., 2009. Analyzing the Behavior of an Artificial Hormone System for Task Allocation. Sixth Int. Conf. on Autonomic and Trusted Computing, p.47–61. [doi:10.1007/978-3-642-02704-8_5]

  • Brinkschulte, U., Pacher, M., von Renteln, A., 2007. Towards an artificial hormone system for self-organizing real-time task allocation. LNCS, 4761:339–347. [doi:10.1007/978-3-540-75664-4_34]

    Google Scholar 

  • Brinkschulte, U., Pacher, M., von Renteln, A., 2008. An Artificial Hormone System for Self-organizing Real-time Task Allocation in Organic Middleware. In: Wurtz, R.P. (Ed.), Understanding Complex Systems: Organic Computing. Springer-Verlag, Berlin, p.261–283. [doi:10.1007/978-3-540-77657-4_12]

    Google Scholar 

  • Brooks, R.A., 1991. Integrated systems based on behaviors. ACM SIGART Bull., 2(4):46–50. [doi:10.1145/122344.122352]

    Article  Google Scholar 

  • Castano, A., Shen, W.M., Will, P., 2000. CONRO: towards deployable robots with inter-robots metamorphic capabilities. Auton. Rob., 8(3):309–324. [doi:10.1023/A:1008985810481]

    Article  Google Scholar 

  • Castano, A., Behar, A., Will, P., 2002. The CONRO modules for reconfigurable robots. IEEE/ASME Trans. Mech., 7(4):403–409. [doi:10.1109/TMECH.2002.806233]

    Article  Google Scholar 

  • Chen, D.B., Zhao, C.X., 2007. Particle swarm optimization based on endocrine regulation mechanism. Control Appl., 24(6):1005–1009 (in Chinese).

    Google Scholar 

  • Chen, D.B., Zou, F., 2009. A Multi-objective Endocrine PSO Algorithm. First Int. Conf. on Information Science and Engineering, p.3567–3570. [doi:10.1109/ICISE.2009.76]

  • Danziger, L., Elmergreen, G.L., 1957. Mathematical models of endocrine systems. Bull. Math. Biophys., 19(1):9–18. [doi:10.1007/BF02668288]

    Article  MathSciNet  Google Scholar 

  • Dasgupta, D., 1998. Artificial Immune Systems and Their Applications. Springer-Verlag, Berlin.

    Google Scholar 

  • Dasgupta, D., Nino, L.F., 2008. Immunological Computation: Theory and Applications. Auerbach Publications, Boca Raton, USA. [doi:10.1201/9781420065466]

    Book  Google Scholar 

  • de Castro, L.N., Timmis, J., 2002. Artificial Immune Systems: A New Computational Intelligence Approach. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • de Castro, L.N., von Zuben, F.J., 2004. Recent Developments in Biologically Inspired Computing. Idea Group Publishing, Hershey, USA.

    Google Scholar 

  • Ding, Y.S., Sun, H.B., Hao, K.R., 2007. A bio-inspired emergent system for intelligent Web service composition and management. Knowl.-Based Syst., 20(5):457–465. [doi:10. 1016/j.knosys.2007.01.007]

    Article  Google Scholar 

  • Dong, D.Y., You, H.F., Zhang, Y.P., Wang, X.F., 2010. A Hormone-Based Clustering Algorithm in Wireless Sensor Networks. Second Int. Conf. on Computer Engineering and Technology, p.555–559. [doi:10.1109/ICCET.2010.5485808]

  • El Sharkawi, M.A., Mori, H., Niebur, D., Pao, Y.H., 2000. Overview of Artificial Neural Networks. IEEE, New York, USA.

    Google Scholar 

  • Farhy, L.S., 2004. Modeling of oscillations of endocrine networks with feedback. Methods Enzymol., 384(1):54–81. [doi:10.1016/S0076-6879(04)84005-9]

    Article  Google Scholar 

  • Farhy, L.S., Straume, M., Johnson, M.L., Kovatchev, B., Veldhuis, J.D., 2001. A construct of interactive feedback control of the GH axis in the male. Am. J. Phys. Reg. Integr. Compar. Phys., 281(1):R38–R51.

    Google Scholar 

  • Felig, P., Frohman, L.A., 2001. Endocrinology and Metabolism (4th Ed.). McGraw-Hill Professional, New York, USA.

    Google Scholar 

  • Fogel, D.B., 2005. Evolutionary Computation—Toward a New Philosophy of Machine Intelligence (3rd Ed.). Wiley-IEEE Press, New York, USA.

    Google Scholar 

  • Graupe, D., 2007. Principles of Artificial Neural Networks. World Scientific Publishing Company, Singapore. [doi:10.1142/9789812770578]

    Book  MATH  Google Scholar 

  • Greensted, A.J., Tyrrell, A.M., 2003. Fault Tolerance via Endocrinologic Based Communication for Multiprocessor Systems. Fifth Int. Conf. on Evolvable Systems: from Biology to Hardware, p.24–34. [doi:10.1007/3-540-365 53-2_3]

  • Greensted, A.J., Tyrrell, A.M., 2004. An Endocrinologic-Inspired Hardware Implementation of a Multicellular System. Proc. NASA/DOD Conf. on Evolution Hardware, p.245–252. [doi:10.1109/EH.2004.1310837]

  • Greensted, A.J., Tyrrell, A.M., 2005. Implementation Results for a Fault-Tolerant Multicellular Architecture Inspired by Endocrine Communication. Proc. NASA/DOD Conf. on Evolution Hardware, p.253–261. [doi:10.1109/EH.2005.31]

  • Guo, Z.W., 2009. Formal Study of Neuroendocrine Complex System. MS Thesis, Yangzhou University, Yangzhou, China (in Chinese).

    Google Scholar 

  • Heylighen, F., Gershenson, C., Staab, S., Flake, G.W., Pennock, D.M., Fain, D.C., de Roure, D., Aberer, K., Shen, W.M., Dousse, O., et al., 2003. Neurons, viscose fluids, freshwater polyp hydra-and self-organizing information systems. IEEE Intell. Syst., 18(4):72–86. [doi:10.1109/MIS.2003.1217631]

    Article  Google Scholar 

  • Hou, F.L., Shen, W.M., 2006a. Mathematical Foundation for Hormone-Inspired Control for Self-reconfigurable Robotic Systems. IEEE Int. Conf. on Robotics and Automation, p.1477–1482. [doi:10.1109/ROBOT.2006.1641917]

  • Hou, F.L., Shen, W.M., 2006b. Hormone-Inspired Adaptive Distributed Synchronization of Reconfigurable Robots. Ninth Int. Conf. Intelligent and Autonomous Systems, p.455–462.

  • Huang, G.R., 2003. Research on Artificial Endocrine Models and Its Applications. PhD Thesis, University of Science and Technology of China, Hefei, China (in Chinese).

    Google Scholar 

  • Huang, G.R., Cao, X.B., Xu, M., Wang, X.F., 2004. Self-organization algorithm of behaviors based on endocrine regulation mechanism. Acta Autom. Sin., 30(3):460–465 (in Chinese).

    Google Scholar 

  • Ihara, H., Mori, K., 1984. Autonomous decentralized computer control systems. IEEE Comput., 17(8):57–66. [doi:10.1109/MC.1984.1659218]

    Google Scholar 

  • Jiang, T.X., Widelitz, R.B., Shen, W.M., Will, P., Wu, D.Y., Lin, C.M., Jung, H.S., Chuong, C.M., 2004. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. Int. J. Dev. Biol., 48(2–3):117–135. [doi:10.1387/ijdb.15272 377]

    Article  Google Scholar 

  • Keenan, D.M., Lieinio, J., Veldhuis, J.D., 2001. A feedback-controlled ensemble model of the stress-responsive hypothalamo-pituitary-adrenal axis. PNAS, 98(7):4028–4033. [doi:10.1073/pnas.051624198]

    Article  Google Scholar 

  • Kravitz, E.A., 1988. Hormonal control of behavior: amines and the biasing of behavioral output in lobsters. Science, 241(4874):1775–1781. [doi:10.1126/science.2902685]

    Article  Google Scholar 

  • Krivokon, M., Will, P., Shen, W.M., 2005. Hormone-Inspired Distributed Control of Self-reconfiguration. IEEE Int. Conf. on Networking, Sensing and Control, p.514–519. [doi:10.1109/ICNSC.2005.1461243]

  • Kyrylov, V., Severyanova, L.A., Vieira, A., 2005. Modeling robust oscillatory behavior of the hypothalamic-pituitary adrenal axis. IEEE Trans. Biomed. Eng., 52(12):1977–1983. [doi:10.1109/TBME.2005.857671]

    Article  Google Scholar 

  • Laketic, D., Tufte, G., Haddow, P.C., 2009. Stochastic Adaptation to Environmental Changes Supported by Endocrine System Principles. Proc. NASA/ESA Conf. on Adaptive Hardware and Systems, p.215–222. [doi:10.1109/AHS.2009.23]

  • Li, G.Q., Liu, B.Z., Liu, Y.W., 1995. A dynamical model of the pulsatile secretion of the hypothalamo-pituitary-thyroid axis. Biosystems, 35(1):83–92. [doi:10.1016/0303-2647 (94)01484-O]

    Article  Google Scholar 

  • Li, X., Wang, X.F., Lei, Y., You, H.F., 2010. A Self-organized Algorithm Based on Digital Hormone. Third Int. Conf. on Advanced Computer Theory and Engineering, p.398–402. [doi:10.1109/ICACTE.2010.5579300]

  • Liang, J.W., You, H.F., Wang, X.F., 2010. A Hormone-Modulated Emotional Model. Second Int. Conf. on Computer Engineering and Technology, p.537–541. [doi:10.1109/ICCET.2010.5485816]

  • Liao, E.Y., Mou, Z.H., 2007. Endocrinology (2nd Ed.). People’s Medical Publishing House, Beijing, China (in Chinese).

    Google Scholar 

  • Liu, B., 2006. Bio-network-Based Intelligent Control Systems and Their Applications. PhD Thesis, Donghua University, Shanghai, China (in Chinese).

    Google Scholar 

  • Liu, B., Ding, Y.S., 2006. A two-level controller based on the modulation principle of testosterone release. J. Shanghai Jiao Tong Univ., 40(5):822–824 (in Chinese).

    MathSciNet  Google Scholar 

  • Liu, B., Han, H., Ding, Y.S., 2005a. A Decoupling Control Based on the Bi-regulation Principle of Growth Hormone. ICSC Congress on Computational Intelligence: Methods and Applications, p.1–4. [doi:10.1109/CIMA.2005.1662297]

  • Liu, B., Ren, L.H., Ding, Y.S., 2005b. A Novel Intelligent Controller Based on Modulation of Neuroendocrine System. Int. Symp. on Neural Network, p.119–124. [doi:10.1007/11427469_18]

  • Liu, B., Ding, Y.S., Wang, J.H., 2006a. An Intelligent Controller Inspired from Neuroendocrine-Immune System. Int. Conf. on Intelligent Systems and Knowledge Engineering, p.31–35.

  • Liu, B., Zhang, Z.W., Ding, Y.S., 2006b. Decoupling control based on bi-directional regulation principle of growth hormone. J. Southeast Univ. (Nat. Sci. Ed.), 36(Suppl 1):5–8 (in Chinese).

    MathSciNet  Google Scholar 

  • Liu, B., Ding, Y.S., Wang, J.H., 2008. Nonlinear optimized intelligent controller based on modulation of NEI system. Control Dec., 23(10):1159–1162 (in Chinese).

    Google Scholar 

  • Liu, B., Ding, Y.S., Wang, J.H., 2009. Intelligent Network Control System Inspired from Neuroendocrine-Immune System. Sixth Int. Conf. on Fuzzy Systems and Knowledge Discovery, p.136–140. [doi:10.1109/FSKD.2009.445]

  • Liu, Y.W., Hu, Z.H., Peng, J.H., Liu, B.Z., 1999. A dynamical model for the pulsatile secretion of the hypothalamo-pituitary-adrenal axis. Math. Comput. Model., 29(4):103–110. [doi:10.1016/S0895-7177(99)00043-6]

    Article  Google Scholar 

  • Mendao, M., 2007. A Neuro-Endocrine Control Architecture Applied to Mobile Robotics. PhD Thesis, University of Kent, Canterbury, UK.

    Google Scholar 

  • Miyamoto, S., Mori, K., Ihara, H., 1984. Autonomous decentralized control and its application to the rapid transit system. Comput. Ind., 5(2):115–124. [doi:10.1016/0166-3615(84)90016-2]

    Article  Google Scholar 

  • Moioli, R.C., Vargas, P.A., von Zuben, F.J., Husbands, P., 2008a. Evolving an Artificial Homeostatic System. Nineteenth Brazilian Symp. on Artificial Intelligence, p.278–288. [doi:10.1007/978-3-540-88190-2_33]

  • Moioli, R.C., Vargas, P.A., von Zuben, F.J., Husbands, P., 2008b. Towards the Evolution of an Artificial Homeostatic System. IEEE Congress on Evolutionary Computation, p.4023–4030. [doi:10.1109/CEC.2008.4631346]

  • Moioli, R.C., Vargas, P.A., Husbands, P., 2009. A Multiple Hormone Approach to the Homeostatic Control of Conflicting Behaviours in an Autonomous Mobile Robot. IEEE Congress on Evolutionary Computation, p.47–54. [doi:10.1109/CEC.2009.4982929]

  • Mori, K., 2001. Autonomous Decentralized System Technologies and Their Application to Train Transport Operation System. In: Winter, V.L., Bhattacharya, S. (Eds.), High Integrity Software. Kluwer Academic Publishers, Norwell, USA, p.89–111.

    Google Scholar 

  • Neal, M., Timmis, J., 2003. Timidity: a useful emotional mechanism for robot control? Informatica, 27(4):197–204.

    MATH  Google Scholar 

  • Neal, M., Timmis, J., 2005. Once More unto the Breach: Towards Artificial Homeostasis? In: de Castro, L.N., von Zuben, F.J. (Eds.), Recent Development in Biologically Inspired Computing. Idea Group Publishing, Hershey, USA, p.340–366.

    Google Scholar 

  • Ogata, T., Sugano, S., 1999. Emotional Communication Between Humans and the Autonomous Robot Which Has the Emotion Model. Proc. IEEE Int. Conf. on Robotics and Automation, p.3177–3182. [doi:10.1109/ROBOT.1999.774082]

  • Peng, H., Li, Y., Wang, L., Shen, L.C., 2008. Hormone-Inspired Cooperative Control for Multiple UAVS Wide Area Search. Int. Conf. on Intelligent Computing, p.808–816. [doi:10.1007/978-3-540-87442-3_99]

  • Rabunal, J.R., Dorrado, J., 2005. Artificial Neural Networks in Real-Life Applications. Idea Group Publishing, Hershey, USA.

    Google Scholar 

  • Salemi, B., Shen, W.M., Will, P., 2001. Hormone-Controlled Metamorphic Robots. IEEE Int. Conf. on Robotics and Automation, p.4194–4199. [doi:10.1109/ROBOT.2001.933273]

  • Savino, W., Dardenne, M., 1995. Immune-neuroendocrine interactions. Immunol. Today, 16(7):318–322. [doi:10. 1016/0167-5699(95)80144-8]

    Article  Google Scholar 

  • Shen, W.M., Lu, Y.M., Will, P., 2000a. Hormone-Based Control for Self-reconfigurable Robots. Proc. 4th Int. Conf. on Autonomous Agents, p.1–8. [doi:10.1145/336595.336602]

  • Shen, W.M., Salemi, B., Will, P., 2000b. Hormones for Self-reconfigurable Robots. Sixth Int. Conf. on Intelligent Autonomous Systems, p.918–925.

  • Shen, W.M., Chuong, C.M., Will, P., 2002a. Digital Hormone Model for Self-organization. Eighth Int. Conf. on Artificial Life, p.116–120.

  • Shen, W.M., Chuong, C.M., Will, P., 2002b. Simulating Self-organization for Multi-robot Systems. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.2776–2781. [doi:10.1109/IRDS.2002.1041690]

  • Shen, W.M., Salemi, B., Will, P., 2002c. Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Trans. Robot. Autom., 18(5):700–712. [doi:10.1109/TRA.2002.804502]

    Article  Google Scholar 

  • Shen, W.M., Will, P., Galstyan, A., Chuong, C.M., 2004. Hormone-inspired self-organization and distributed control of robotic swarms. Auton. Robots, 17(1):93–105. [doi:10.1023/B:AURO.0000032940.08116.f1]

    Article  Google Scholar 

  • Stradner, J., Hamann, H., Schmickl, T., Crailsheim, K., 2009. Analysis and Implementation of an Artificial Homeostatic Hormone System: a First Case Study in Robotic Hardware. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.595–600. [doi:10.1109/IROS.2009.5354056]

  • Streichert, T., 2007. Self-adaptive Hardware/Software Reconfigurable Networks—Concepts, Methods, and Implementation. MS Thesis, University of Erlangen-Nuremberg, Nuremberg, Germany.

    Google Scholar 

  • Sugano, S., Ogata, T., 1996. Emergence of Mind in Robots for Human Interface—Research Methodology and Robot Modal. IEEE Int. Conf. on Robotics and Automation, p.1191–1198. [doi:10.1109/ROBOT.1996.506869]

  • Timmis, J., 2007. Artificial immune systems—today and tomorrow. Nat. Comput., 6(1):1–18. [doi:10.1007/s11047-006-9029-1]

    Article  MathSciNet  MATH  Google Scholar 

  • Timmis, J., Neal, M., Thorniley, J., 2009. An Adaptive Neuro-Endocrine System for Robotic Systems. IEEE Workshop on Robotic Intelligence in Informationally Structured Space, p.129–136. [doi:10.1109/RIISS.2009.4937917]

  • Trumler, W., Thiemann, T., Ungerer, T., 2006. An Artificial Hormone System for Self-organization of Networked Nodes. In: Pan, Y., Ramming, F.J., Schmeck, H., et al. (Eds.), IFIP International Federation for Information Processing: Biologically Inspired Cooperative Computing. Springer-Verlag, Berlin, p.85–94. [doi:10.1007/978-0-387-34733-2_9]

    Google Scholar 

  • Vargas, P.A., Moioli, R.C., de Castro, L.N., Timmis, J., Neal, M., von Zuben, F.J., 2005. Artificial Homeostatic System: a Novel Approach. Eighth European Conf. on Artificial Life, p.754–764. [doi:10.1007/11553090_76]

  • Vargas, P.A., Moioli, R.C., von Zuben, F.J., Husbands, P., 2009. Homeostasis and evolution together dealing with novelties and managing disruptions. Int. J. Intell. Comput. Cybern., 2(3):435–454. [doi:10.1108/17563780910982680]

    Article  MATH  Google Scholar 

  • von Renteln, A., Brinkschulte, U., Weiss, M., 2008. Examinating Task Distribution by an Artificial Hormone System Based Middleware. Eleventh IEEE Symp. on Object Oriented Real-Time Distributed Computing, p.119–123. [doi:10.1109/ISORC.2008.53]

  • Walker, J., Wilson, M., 2007. Hormone-Inspired Control for Group Task Distribution. Proc. Towards Autonomous Robotic Systems, p.1–8.

  • Walker, J., Wilson, M., 2008. A Performance Sensitive Hormone-Inspired System for Task Distribution Amongst Evolving Robots. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.1293–1298. [doi:10.1109/IROS.2008.4650951]

  • Weigent, D.A., Blalock, J.E., 1987. Interactions between the neuroendocrine and immune systems: common hormones and receptors. Immunol. Rev., 100(1):79–108. [doi:10.1111/j.1600-065X.1987.tb00528.x]

    Article  Google Scholar 

  • Weigent, D.A., Blalock, J.E., 1995. Associations between the neuroendocrine and immune systems. J. Leuk. Biol., 58(2):137–150.

    Google Scholar 

  • White, H., Gallant, A.R., Hornik, K., Stinchcombe, M., Wooldridge, J., 1992. Artificial Neural Networks: Approximation and Learning Theory. Blackwell Publishing, Oxford, UK.

    Google Scholar 

  • Wilder, R.L., 1995. Neuroendocrine-immune system interactions and autoimmunity. Ann. Rev. Immunol., 13(1):307–338. [doi:10.1146/annurev.iy.13.040195.001515]

    Article  Google Scholar 

  • Xu, Q.Z., Wang, L., Wang, N., 2010. Lattice-based artificial endocrine system. LNCS, 6330:375–385. [doi:10.1007/978-3-642-15615-1_45]

    Google Scholar 

  • Yang, G., 1996. Physiology and Pathphysiology. Tianjin Scientific and Technical Publishers, Tianjin, China (in Chinese).

    Google Scholar 

  • Yao, X., Xu, Y., 2006. Recent advances in evolutionary computation. J. Comput. Sci. Technol., 21(1):1–18. [doi:10.1007/s11390-006-0001-4]

    Article  MathSciNet  MATH  Google Scholar 

  • Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S., 2007. Modular self-reconfigurable robot systems—challenges and opportunities for the future. IEEE Robot. Autom. Mag., 14(1):43–52. [doi:10.1109/MRA.2007.339623]

    Article  Google Scholar 

  • Zhang, J., Liu, S.S., Wang, X.F., Li, J.L., 2007. Hormone-Based Interacting Nodes Discovery with Low Latency and High Topology Consistency. Third Int. Conf. on Semantics, Knowledge and Grid, p.487–490. [doi:10.1109/SKG.2007.120]

  • Zhang, Y.P., You, H.F., Wang, X.F., 2009. A Hormone Based Tracking Strategy for Wireless Sensor Network. IEEE Int. Conf. on Intelligent Computing and Intelligent Systems, p.104–108. [doi:10.1109/ICICISYS.2009.5358209]

  • Zheng, L.J., 2009. Study on the Chaotic Behaviour of the Nonlinear Dynamical Model for Human Internal Secretion. MS Thesis, Northeast Normal University, Changchun, China (in Chinese).

    Google Scholar 

  • Zhu, A., Yang, S.X., 2006. A neural network approach to dynamic task assignment of multirobots. IEEE Trans. Neur. Netw., 17(5):1278–1287. [doi:10.1109/TNN.2006.875994]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-zheng Xu.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 60802056 and 61073091), the Natural Science Foundation of Shaanxi Province, China (No. 2010JM8028), and the Foundation of Excellent Doctoral Dissertation of Xi’an University of Technology, China (No. 105-211010)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Qz., Wang, L. Recent advances in the artificial endocrine system. J. Zhejiang Univ. - Sci. C 12, 171–183 (2011). https://doi.org/10.1631/jzus.C1000044

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1000044

Key words

CLC number

Navigation