Skip to main content
Log in

Biologically inspired collective construction with visual landmarks

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

We describe our research in using environmental visual landmarks as the basis for completing simple robot construction tasks. Inspired by honeybee visual navigation behavior, a visual template mechanism is proposed in which a natural landmark serves as a visual reference or template for distance determination as well as for navigation during collective construction. To validate our proposed mechanism, a wall construction problem is investigated and a minimalist solution is given. Experimental results show that, using the mechanism of a visual template, a collective robotic system can successfully build the desired structure in a decentralized fashion using only local sensing and no direct communication. In addition, a particular variable, which defines tolerance for alignment of the structure, is found to impact the system performance. By decreasing the value of the variable, system performance is improved at the expense of a longer construction time. The visual template mechanism is appealing in that it can use a reference point or salient object in a natural environment that is new or unexplored and it could be adapted to facilitate more complicated building tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayindir, L., Sahin, E., 2009. Modeling Self-Organized Aggregation in Swarm Robotic Systems. IEEE Swarm Intelligence Symp., p.88–95. [doi:10.1109/SIS.2009.4937849]

  • Berman, S., Lindsey, Q., Sakar, M.S., Kumar, V., Pratt, S.C., 2011. Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems. Proc. IEEE, 99(9):1470–1481. [doi:10.1109/JPROC.2011.2111450]

    Article  Google Scholar 

  • Bonabeau, E., Theraulaz, G., Deneubourg, J., Franks, N.R., Rafelsberger, O., Joly, J., Blanco, S., 1998. A model for the emergence of pillars, walls and royal chambers in termite nests. Phil. Trans. R. Soc. Lond. B, 353(1375):1561–1576. [doi:10.1098/rstb.1998.0310]

    Article  Google Scholar 

  • Camazine, S., Franks, N.R., Sneyd, J., Bonabeau, E., Deneubourg, J.L., Theraulaz, G., 2001. Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Collett, T.S., Collett, M., 2002. Memory use in insect visual navigation. Nat. Rev. Neurosci., 3(7):542–552. [doi:10.1038/nrn872]

    Article  Google Scholar 

  • Collett, T.S., Graham, P., Durier, V., 2003. Route learning by insects. Curr. Opin. Neurobiol., 13(6):718–725. [doi:10.1016/j.conb.2003.10.004]

    Article  Google Scholar 

  • Fry, S.N., Wehner, R., 2005. Look and turn: landmark-based goal navigation in honey bees. J. Exp. Biol., 208(20):3945–3955. [doi:10.1242/jeb.01833]

    Article  Google Scholar 

  • Hartley, R.I., Zisserman, A., 2004. Multiple View Geometry in Computer Vision (2nd Ed.). Cambridge University Press, Cambridge, UK. [doi:10.1017/CBO9780511811685]

    Book  MATH  Google Scholar 

  • Kelly, J., Zhang, H., 2006. Combinatorial Optimization of Sensing for Rule-Based Planar Distributed Assembly. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3728–3734. [doi:10.1109/IROS.2006.281754]

  • Kube, C.R., Zhang, H., 1993. Collective robotics: from social insects to robots. Adapt. Behav., 2(2):189–218. [doi:10.1177/105971239300200204]

    Article  Google Scholar 

  • Kube, C.R., Parker, C.A., Wang, T., Zhang, H., 2005. Biologically Inspired Collective Robotics. In: de Castro, L.N., von Zuben, F.J. (Eds.), Recent Developments in Biologically Inspired Computing. Idea Group Publlishing, New York, p.369–397.

    Google Scholar 

  • Ladley, D., Bullock, S., 2005. The role of logistic constraints in termite construction of chambers and tunnels. J. Theor. Biol., 234(4):551–564. [doi:10.1016/j. jtbi.2004.12.012]

    Article  MathSciNet  Google Scholar 

  • Melhuish, C., Welsby, J., Edwards, C., 1999. Using Templates for Defensive Wall Building with Autonomous Mobile Ant-like Robots. Proc. Towards Intelligent Mobile Robots.

  • Parker, C.A.C., Zhang, H., 2006. Collective robotic site preparation. Adapt. Behav., 14(1):5–19. [doi:10.1177/105971230601400101]

    Article  Google Scholar 

  • Parker, C.A.C., Zhang, H., 2009. Cooperative decisionmaking in decentralized multiple-robot systems: the best-of-n problem. IEEE/ASME Trans. Mechatron., 14(2):240–251. [doi:10.1109/TMECH.2009.2014370]

    Article  Google Scholar 

  • Parker, C.A.C., Zhang, H., 2011. Biologically inspired collective comparisons by robotic swarms. Int. J. Robot. Res., 30(5):524–535. [doi:10.1177/0278364910397621]

    Article  Google Scholar 

  • Parker, C.A.C., Zhang, H., Kube, C.R., 2003. Blind Bulldozing: Multiple Robot Nest Construction. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2:2010–2015.

    Google Scholar 

  • Payton, D., Estkowski, R., Howard, M., 2005. Pheromone Robotics and the Logic of Virtual Pheromones. In: Sahin, E., Spears, W. (Eds.), Swarm Robotics. Springer Berlin/Heidelberg, p.45–57.

  • Purnamadjaja, A.H., Russell, R.A., 2010. Bi-directional pheromone communication between robots. Robotica, 28(1):69–79. [doi:10.1017/S0263574709005591]

    Article  Google Scholar 

  • Skibniewski, M., 2000. New Directions and Developments in Robotics and Site Atomation in the U.S.A. Proc. 17th ISARC, p.k3–k14.

  • Stewart, R.L., Russell, R.A., 2006. A distributed feedback mechanism to regulate wall construction by a robotic swarm. Adapt. Behav., 14(1):21–51. [doi:10.1177/105971230601400104]

    Article  Google Scholar 

  • Terada, Y., Murata, S., 2004. Automatic Assembly System for a Large-Scale Modular Structure—Hardware Design of Module and Assembler Robot. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 3:2349–2355.

    Google Scholar 

  • Theraulaz, G., Bonabeau, E., Deneubourg, J.L., 1998. The origin of nest complexity in social insects. Complexity, 3(6):15–25. [doi:10.1002/(SICI)1099-0526 (199807/08)3:6〈15::AID-CPLX3〉3.3.CO;2-M]

    Article  Google Scholar 

  • Theraulaz, G., Gautrais, J., Camazine, S., Deneubourg, J.L., 2003. The formation of spatial patterns in social insects: from simple behaviours to complex structures. Phil. Trans. R. Soc. Lond. A, 361(1807):1263–1282. [doi:10.1098/rsta.2003.1198]

    Article  MathSciNet  Google Scholar 

  • Wawerla, J., Sukhatme, G.S., Mataric, M.J., 2002. Collective Construction with Multiple Robots. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 3:2696–2701. [doi:10.1109/IRDS.2002.1041677]

    Article  Google Scholar 

  • Werfel, J., Nagpal, R., 2008. Three-dimensional construction with mobile robots and modular blocks. Int. J. Robot. Res., 27(3–4):463–479. [doi:10.1177/0278364907084984]

    Article  Google Scholar 

  • Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R., 2006. Distributed Construction by Mobile Robots with Enhanced Building Blocks. Proc. IEEE Int. Conf. on Robotics and Automation, p.2787–2794. [doi:10.1109/ROBOT.2006.1642123]

Recommended reading

  • Werfel, J., Ingber, D.E., Nagpal, R., 2007. Collective Construction of Environmentally-Adaptive Structures. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.2345–2352.

  • Werfel, J., Nagpal, R., 2008. Three-dimensional construction with mobile robots and modular blocks. Int. J. Robot. Res., 27(3–4):463–479. [doi:10.1177/0278364907084984]

    Article  Google Scholar 

  • Kelly, J., Zhang, H., 2006. Combinatorial Optimization of Sensing for Rule-Based Planar Distributed Assembly. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.3728–3734. [doi:10.1109/IROS.2006.281754]

  • Petersen, K., Nagpal, R., Werfel, J., 2011. TERMES: an Autonomous Robotic System for Three-Dimensional Collective Construction. Proc. Robotics: Science and Systems.

  • Bonabeau, E., Theraulaz, G., Deneubourg, J., Franks, N.R., Rafelsberger, O., Joly, J., Blanco, S., 1998. A model for the emergence of pillars, walls and royal chambers in termite nests. Phil. Trans. R. Soc. Lond. B, 353(1375):1561–1576. [doi:10.1098/rstb.1998.0310]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-wei Zhang.

Additional information

Project (No. 61075091) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Zw., Zhang, H. & Li, Yb. Biologically inspired collective construction with visual landmarks. J. Zhejiang Univ. - Sci. C 13, 315–327 (2012). https://doi.org/10.1631/jzus.C1100243

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1100243

Key words

CLC number

Navigation