Skip to main content
Log in

An empirical molecular docking study of a di-iron binding protein with iron ions

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Various molecular docking software packages are available for modeling interactions between small molecules and proteins. However, there have been few reports of modeling the interactions between metal ions and metalloproteins. In this study, the AutoDock package was employed to example docking into a di-iron binding protein, bacterioferritin. Each binding site of this protein was tested for docking with iron ions. Blind docking experiments showed that all docking conformations converged into two clusters, one for internal iron binding in sites within the metalloprotein and the other for external iron binding on the protein surface. Local docking experiments showed that there were significant differences between two internal iron binding sites. Docking at one site gave a reasonable root-mean-square deviation (RMSD) distribution with relatively low binding energy. Analysis of the binding mode quality for this site revealed that more than half of the docking conformations were categorized as having good binding geometry, while no good conformations were found for the other site. Further investigations indicated that coordinating water molecules contributed to the stability of binding geometries. This study provides an empirical approach towards the study of molecular docking in metalloproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ananthanarayanan, V.S., Kerman, A., 2006. Role of metal ions in ligand receptor interaction: insights from structural studies. Mol. Cell. Endocr., 246(1–2):53–59. [doi:10. 1016/j.mce.2005.11.023]

    Article  Google Scholar 

  • Bissantz, C., Folkers, G., Rognan, D., 2000. Protein-based virtual screening of chemical databases. I. Evaluation of different docking/scoring combinations. J. Med. Chem., 43(25):4759–4767. [doi:10.1021/jm001044l]

    Article  Google Scholar 

  • Böhm, H.J., 1998. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J. Comput. Aided Mol. Des., 12(4):309–323. [doi:10.1023/A:1007999920146]

    Article  Google Scholar 

  • Chen, D., Menche, G., Power, T.D., Sower, L., Peterson, J.W., Schein, C.H., 2007. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins, 67(3):593–605. [doi:10.1002/prot.21249]

    Article  Google Scholar 

  • Ferrara, P., Gohlke, H., Price, D.J., Klebe, G., Brooks, C.L.I., 2004. Assessing scoring functions for protein-ligand interactions. J. Med. Chem., 47(12):3032–3047. [doi:10. 1021/jm030489h]

    Article  Google Scholar 

  • Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Repasky, M.P., Knoll, E.H., Shelley, M., Perry, J.K., et al., 2004. Glide: a new approach for rapid, accurate docking and scoring. I. Method and assessment of docking accuracy. J. Med. Chem., 47(7):1739–1749. [doi:10.1021/jm0306430]

    Article  Google Scholar 

  • Halgren, T.A., Murphy, R.B., Friesner, R.A., Beard, H.S., Frye, L.L., Pollard, W.T., Banks, J.L., 2004. Glide: a new approach for rapid, accurate docking and scoring. Part 2: Enrichment factors in database screening. J. Med. Chem., 47(7):1750–1759. [doi:10.1021/jm030644s]

    Article  Google Scholar 

  • Halperin, I., Ma, B.Y., Wolfson, H., Nussinov, R., 2002. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins, 47(4):409–443. [doi:10.1002/prot.10115]

    Article  Google Scholar 

  • Hu, X., Shelver, W.H., 2003. Docking studies of matrix metalloproteinase inhibitors: zinc parameter optimization to improve the binding free energy prediction. J. Mol. Graph. Model., 22(2):115–126. [doi:10.1016/S1093-3263(03)00 153-0]

    Article  Google Scholar 

  • Huey, R., Morris, G.M., Olson, A.J., Goodsell, D.S., 2007. A semiempirical free energy force field with charge-based desolvation. J. Comput. Chem., 28(6):1145–1152. [doi:10. 1002/jcc.20634]

    Article  Google Scholar 

  • Jones, G., Willett, P., Glen, R.C., Leach, A.R., Taylor, R., 1997. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 267(3):727–748. [doi:10. 1006/jmbi.1996.0897]

    Article  Google Scholar 

  • Khandelwal, A., Lukacova, V., Comez, D., Kroll, D., Raha, S., Balaz, S., 2005. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J. Med. Chem., 48(17): 5437–5447. [doi:10.1021/jm049050v]

    Article  Google Scholar 

  • Kramer, B., Rarey, M., Lengauer, T., 1999. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking. Proteins, 37(2):228–241. [doi:10.1002/ (SICI)1097-0134(19991101)37:2〈228::AID-PROT8〉3.0.C O;2-8]

    Article  Google Scholar 

  • Kurtz, D.M.Jr., 1997. Structural similarity and functional diversity in diiron-oxo proteins. J. Biol. Inorg. Chem., 2(2):159–167. [doi:10.1007/s007750050120]

    Article  MathSciNet  Google Scholar 

  • Morris, G.M., Goodsell, D.S., Huey, R., Olson, A.J., 1996. Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des., 10(4):293–304. [doi:10.1007/BF00124499]

    Article  Google Scholar 

  • Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J., 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 19(14): 1639–1662. [doi:10.1002/(SICI)1096-987X(19981115)19: 14〈1639::AID-JCC10〉3.0.CO;2-B]

    Article  Google Scholar 

  • Spyrakis, F., Amadasi, A., Fornabaio, M., Abraham, D.J., Mozzarelli, A., Kellogg, G.E., Cozzini, P., 2007. The consequences of scoring docked ligand conformations using free energy correlations. Eur. J. Med. Chem., 42(7):921–933. [doi:10.1016/j.ejmech.2006.12.037]

    Article  Google Scholar 

  • Venkatachalam, C.M., Jiang, X., Oldfield, T., Waldman, M., 2003. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model., 21(4):289–307. [doi:10.1016/S1093-3263 (02)00164-X]

    Article  Google Scholar 

  • Warren, G.L., Andrews, C.W., Capelli, A.M., Clarke, B., LaLonde, J., Lambert, M.H., Lindvall, M., Nevins, N., Semus, S.F., Senger, S., et al., 2006. A critical assessment of docking programs and scoring functions. J. Med. Chem., 49(20):5912–5931. [doi:10.1021/jm050362n]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xie.

Additional information

Project (No. 2011-II-010) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, P. & Xie, H. An empirical molecular docking study of a di-iron binding protein with iron ions. J. Zhejiang Univ. - Sci. C 14, 118–124 (2013). https://doi.org/10.1631/jzus.C1200072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1200072

Key words

CLC number

Navigation