Skip to main content
Log in

IEEE 1588 based time synchronization system for a seafloor observatory network

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

An IEEE 1588 based application scheme was proposed to achieve accurate time synchronization for a deep seafloor observatory network based on the communication topological structure of the Zhejiang University Experimental and Research Observatory. The principles of the network time protocol (NTP) and precision time protocol (PTP) were analyzed. The framework for time synchronization of the shore station, undersea junction box layer, and submarine science instrument layer was designed. NTP and PTP network signals were decoded by a PTP master clock on a shore station that receives signals from the Global Positioning System and the BeiDou Navigation Satellite System as reference time sources. These signals were remotely transmitted by a subsea optical-electrical composite cable through an Ethernet passive optical network. Accurate time was determined by time synchronization devices in each layer. Synchronization monitoring experiments performed within a laboratory environment indicated that the proposed system is valid and has the potential to realize microsecond accuracy to satisfy the time synchronization requirements of a high-precision seafloor observatory network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carta, A., Locci, N., Muscas, C., Pinna, F., Sulis, S., 2011. GPS and IEEE 1588 synchronization for the measurement of synchrophasors in electric power systems. Comput. Stand. Interf., 33(2):176–181. [doi:10.1016/j.csi.2010.06.009]

    Article  Google Scholar 

  • Chen, Y.H., Yang, C.J., Li, D.J., Jin, B., Chen, Y., 2012a. Design and application of a junction box for cabled ocean observatories. Mar. Technol. Soc. J., 46(3):50–63. [doi:10.4031/MTSJ.46.3.4]

    Article  Google Scholar 

  • Chen, Y.H., Yang, C.J., Li, D.J., Jin, B., Chen, Y., 2012b. Development of a direct current power system for a multinode cabled ocean observatory system. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 13(8):613–623. [doi:10.1631/jzus.C1100381]

    Article  Google Scholar 

  • Chen, Y.H., Yang, C.J., Li, D.J., Jin, B., Chen, Y., 2013. Study on 10 kVDC powered junction box for a cabled ocean observatory system. China Ocean Eng., 27(2):265–275. [doi:10.1007/s13344-013-0023-y]

    Article  Google Scholar 

  • del Rio, J., Toma, D., Shariat-Panahi, S., Mànuel, A., Ramos, H.G., 2012. Precision timing in ocean sensor systems. Meas. Sci. Technol., 23(2):025801. [doi:10.1088/0957-0233/23/2/025801]

    Article  Google Scholar 

  • Du, Z.P., Lu, Y.M., Ji, Y.F., 2011. An enhanced end-to-end transparent clock mechanism with a fixed delay ratio. IEEE Commun. Lett., 15(8):872–874. [doi:10.1109/LCOMM.2011.062911.110918]

    Article  Google Scholar 

  • Ferrari, P., Flammini, A., Marioli, D., Taroni, A., 2008. IEEE 1588-based synchronization system for a displacement sensor network. IEEE Trans. Instrum. Meas., 57(2):254–260. [doi:10.1109/TIM.2007.909471]

    Article  Google Scholar 

  • Ferrari, P., Flammini, A., Rinaldi, S., Bondavalli, A., Brancati, F., 2011. Evaluation of Timestamping Uncertainty in a Software-Based IEEE1588 Implementation. IEEE Conf. on Instrumentation and Measurement Technology, p.1–6. [doi:10.1109/IMTC.2011.5944319]

    Google Scholar 

  • Han, J., Jeong, D.K., 2010. A practical implementation of IEEE 1588–2008 transparent clock for distributed measurement and control systems. IEEE Trans. Instrum. Meas., 59(2):433–439. [doi:10.1109/TIM.2009.2024371]

    Article  Google Scholar 

  • Jin, S.G., 2013. Recent progresses on BeiDou/COMPASS and other global navigation satellite systems (GNSS)-I. Adv. Space Res., 51(6):941. [doi:10.1016/j.asr.2012.12.007]

    Article  Google Scholar 

  • Kanazawa, T., Shinohara, M., Sakai, S., Utada, H., Shiobara, H., Yamada, T., Mochizuki, K., 2011. New Innovative Ocean Bottom Cabled Seismometer System and Observation in the Sea of Japan. IEEE Int. Symp. on Scientific Use of Submarine Cables and Related Technologies, p.1–3. [doi:10.1109/UT.2011.5774112]

    Google Scholar 

  • Lentz, S., Lécroart, A., 2009. Precision Timing in the NEPTUNE Canada Network. OCEANS, p.1–5. [doi:10.1109/OCEANSE.2009.5278121]

    Google Scholar 

  • Li, D.J., Yang, J.C., Lin, D.D., Yang, C.J., Jin, B., 2012. Power monitor system in seafloor junction box based on MCU and CPLD. J. Zhejiang Univ. (Eng. Sci.), 46(8):1369–1374 (in Chinese). [doi:10.3785/j.issn.1008-973X.2012.08.003]

    Google Scholar 

  • Li, Z.S., Li, D.J., Lin, L., Chen, Y., 2010. Design considerations for electromagnetic couplers in contactless power transmission systems for deep-sea applications. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 11(10):824–834. [doi:10.1631/jzus.C0910711]

    Article  Google Scholar 

  • Lixia, M., Muscas, C., Sulis, S., 2009. Application of IEEE 1588 to the Measurement of Synchrophasors in Electric Power Systems. IEEE Int. Symp. on Precision Clock Synchronization for Measurement, Control and Communication, p.1–6. [doi:10.1109/ISPCS.2009.5340198]

    Google Scholar 

  • López, J.M., Ruiz, M., Borrego, J., de Arcas, G., Barrera, E., Vega, J., 2010. A versatile trigger and synchronization module with IEEE1588 capabilities and EPICS support. Fus. Eng. Des., 85(3–4):340–344. [doi:10.1016/j.fusengdes.2010.04.021]

    Article  Google Scholar 

  • Loschmidt, P., Exel, R., Nagy, A., Gaderer, G., 2008. Limits of Synchronization Accuracy Using Hardware Support in IEEE 1588. IEEE Int. Symp. on Precision Clock Synchronization for Measurement, Control and Communication, p.12–16. [doi:10.1109/ISPCS.2008.4659205]

    Chapter  Google Scholar 

  • Mànuel, A., Roset, X., del Rio, J., Mihai Toma, D., Carreras, N., Shariat Panahi, S., Garcia-Benadí, A., Owen, T., Cadena, J., 2012. Ocean bottom seismometer: design and test of a measurement system for marine seismology. Sensors, 12(12):3693–3719. [doi:10.3390/s120303693]

    Article  Google Scholar 

  • Milevsky, A., Walrod, J., 2008. Development and Test of IEEE 1588 Precision Timing Protocol for Ocean Observatory Networks. OCEANS, p.1–7. [doi:10.1109/OCEANS.2008.5152029]

    Google Scholar 

  • Mills, D.L., 2003. A brief history of NTP time: memoirs of an Internet timekeeper. ACM SIGCOMM Comput. Commun. Rev., 33(2):9–21. [doi:10.1145/956981.956983]

    Article  Google Scholar 

  • Mills, D.L., Martin, J., Burbank, J., Kasch, W., 2010. Network Time Protocol (Version 4) — Protocol and Algorithms Specification. DARPA Network Working Group Report RFC-5905, University of Delaware. Available from http://www.rfc-editor.org/rfc/rfc5905.txt [Accessed on Mar. 23, 2013].

    Google Scholar 

  • Moreno-Muñoz, A., Pallarés-López, V., de la Rosa, J.J.G., Real-Calvo, R., González-Redondo, M., Moreno-García, I.M., 2013. Embedding synchronized measurement technology for smart grid development. IEEE Trans. Ind. Inf., 9(1):52–61. [doi:10.1109/TII.2012.2209659]

    Article  Google Scholar 

  • Neagoe, T., Cristea, V., Banica, L., 2006. NTP versus PTP in Computer Networks Clock Synchronization. IEEE Int. Symp. on Industrial Electronics, p.317–362. [doi:10.1109/ISIE.2006.295613]

    Google Scholar 

  • Ouellette, M., Ji, K., Liu, S., Li, H., 2011. Using IEEE 1588 and boundary clocks for clock synchronization in telecom networks. IEEE Commun. Mag., 49(2):164–171. [doi:10.1109/MCOM.2011.5706325]

    Article  Google Scholar 

  • Refan, M.H., Valizadeh, H., 2011. Redundant GPS Time Synchronization Boards for Computer Networks. 19th Telecommunications Forum, p.904–907. [doi:10.1109/TELFOR.2011.6143691]

    Google Scholar 

  • Sun, J., Ma, H.H., Xu, D., 2010. High Precision Time Synchronization Scheme for Distributed Intrusion Detection System. Int. Conf. on Computer Application and System Modeling, p.V2-219–V2-223. [doi:10.1109/ICCASM.2010.5619315]

    Google Scholar 

  • Wang, Y.W., Long, F., 2010. Research of Time Synchronization in Digital Substation Based on IEEE1588. 2nd Int. Conf. on Information Science and Engineering, p.2320–2325. [doi:10.1109/ICISE.2010.5691671]

    Chapter  Google Scholar 

  • Ye, S., 2011. Beidou time synchronization receiver for smart grid. Energy Proc., 12:37–42. [doi:10.1016/j.egypro.2011.10.007]

    Article  Google Scholar 

  • Ying, G., 2012. Energy attenuation-based time synchronization for mobile underwater sensor networks. J. China Univ. Posts Telecommun., 19(2):57–64. [doi:10.1016/S1005-8885(11)60443-3]

    Article  Google Scholar 

  • Zhang, X.L., Tang, X.Q., Chen, J.H., 2008. Time synchronization of hierarchical real-time networked CNC system based on Ethernet/Internet. Adv. Manuf. Technol., 36(11–12):1145–1156. [doi:10.1007/s00170-007-0934-y]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-jun Li.

Additional information

Project supported by the National High-Tech R&D (863) Program of China (No. 2012AA09A408) and the National Natural Science Foundation of China (No. 51221004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Dj., Wang, G., Yang, Cj. et al. IEEE 1588 based time synchronization system for a seafloor observatory network. J. Zhejiang Univ. - Sci. C 14, 766–776 (2013). https://doi.org/10.1631/jzus.C1300084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300084

Key words

CLC number

Navigation