Skip to main content
Log in

Human-machine interaction force control: using a model-referenced adaptive impedance device to control an index finger exoskeleton

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine interaction (HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. We present an approach for HMI force control via model reference adaptive impedance control (MRAIC) to solve this problem in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is formulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a proportional-integral-derivative (PID) method in the time domain with real experiments and in the frequency domain with simulations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control problem in hand exoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzurra, C., Nicola, V., Francesco, G., et al., 2012. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Trans. Mechatron., 17(5):884–894. [doi:10.1109/TMECH.2011.2144614]

    Article  Google Scholar 

  • Bi, Q., Yang, C.J., Deng, X.L., et al., 2013. Contacting mechanical impedance of human finger based on uncertain system. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1619–1624. [doi:10.1109/AIM.2013.6584328]

    Google Scholar 

  • Fang, H.G., Xie, Z.W., Liu, H., et al., 2009. An exoskeleton force feedback master finger distinguishing contact and non-contact mode. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, p.1059–1064. [doi:10.1109/AIM.2009.5229726]

    Google Scholar 

  • Hogan, N., 1985. Impedance control: an approach to manipulation: part I-theory. J. Dynam. Syst. Meas. Contr., 107(1):1–7.

    Article  MATH  Google Scholar 

  • Huo, W.G., Huang, J., Wang, Y.J., et al., 2011. Control of upper-limb power-assist exoskeleton based on motion intention recognition. Int. Conf. on Robotics and Automation, p.2243–2248. [doi:10.1109/ICRA.2011.5980483]

    Google Scholar 

  • Kamal, H.S., Hamid, M., Farrokh, J.S., 2010. Model reference adaptive control design for a teleoperation system with output prediction. J. Intell. Robot. Syst., 59:319–339. [doi:10.1007/s10846-010-9400-4]

    Article  MATH  Google Scholar 

  • Kamnik, R., Matko, D., Bajd, T., 1998. Application of model reference adaptive control to industrial robot impedance control. J. Intell. Robot. Syst., 22:153–163. [doi:10.1023/A:1007932701318]

    Article  MATH  Google Scholar 

  • Kiguchi, K., Hayashi, Y., 2012. An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans. Syst. Man. Cybern. B, 42:1064–1071. [doi:10.1109/TSMCB.2012.2185843]

    Article  Google Scholar 

  • Nakagawara, S., Kajimoto, H., Kawakami, N., et al., 2005. An encounter-type multi-fingered master hand using circuitous joints. Proc. IEEE Int. Conf. on Robotics and Automation, p.2667–2672. [doi:10.1109/ROBOT.2005.1570516]

    Google Scholar 

  • Nicosia, S., Tomei, P., 1984. Model reference adaptive control algorithms for industrial robots. Automatica, 20(5): 635–644. [doi:10.1016/0005-1098(84)90013-X]

    Article  MATH  Google Scholar 

  • Pang, Z.H., Chui, H., 2009. System Identification and Adaptive Control. Beijing University of Aeronautics and Astronautics Press, Beijing, p.78–80 (in Chinese).

    Google Scholar 

  • Polotto, A., Modulo, F., Flumian, F., et al., 2012. Index finger rehabilitation/assistive device. 4th IEEE RAS/EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, p.1518–1523. [doi:10.1109/BioRob.2012.6290676]

    Google Scholar 

  • Prange, G.B., Jannink M.J.A., Groothuis-Oudshoorn, C.G.M., et al., 2006. Systematic review of the effect of robotaided therapy on recovery of the hemiparetic arm after stroke. J. Rehabil. Res. Devel., 43(2):171–183. [doi:10.1682/JRRD.2005.04.0076]

    Article  Google Scholar 

  • Schabowsky, C.N., Godfrey, S.B., Holley, R.J., et al., 2010. Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot. J. NeuroEng. Rehabil., 7:36. [doi:10.1186/1743-0003-7-36]

    Article  Google Scholar 

  • Seraji, H., Colbaugh, R., 1997. Force tracking in impedance control. Int. J. Robot. Res., 16(1):97–117. [doi:10.1177/027836499701600107]

    Article  Google Scholar 

  • Takahashi, C.D., Der-Yeghiaian, L., Le, V., et al., 2008. Robot-based handmotor therapy after stroke. Brain, 131(2):425–437. [doi:10.1093/brain/awm311]

    Article  Google Scholar 

  • Tjahyono, A.P., Aw, K.C., Devaraj, H., et al., 2013. A fivefingered hand exoskeleton driven by pneumatic artificial muscles with novel polypyrrole sensors. Ind. Robot Int. J., 40(3):251–260. [doi:10.1108/01439911311309951]

    Article  Google Scholar 

  • Ueki, S., Kawasakia, H., Itoa, S., et al., 2012. Development of a hand-assist robot with multi-degrees-of-freedom for rehabilitation therapy. IEEE/ASME Trans. Mechatron., 17(1):136–146. [doi:10.1109/TMECH.2010.2090353]

    Article  Google Scholar 

  • Wege, A., Kondak, K., Hommel, G., 2006. Force control strategy or a hand exoskeleton based on sliding mode position control. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.4615–4620. [doi:10.1109/IROS.2006.282169]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can-jun Yang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51221004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, Q., Yang, Cj. Human-machine interaction force control: using a model-referenced adaptive impedance device to control an index finger exoskeleton. J. Zhejiang Univ. - Sci. C 15, 275–283 (2014). https://doi.org/10.1631/jzus.C1300259

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300259

Key words

CLC number

Navigation