Skip to main content
Log in

Generation maintenance scheduling based on multiple objectives and their relationship analysis

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

In a market environment of power systems, each producer pursues its maximal profit while the independent system operator is in charge of the system reliability and the minimization of the total generation cost when generating the generation maintenance scheduling (GMS). Thus, the GMS is inherently a multi-objective optimization problem as its objectives usually conflict with each other. This paper proposes a multi-objective GMS model in a market environment which includes three types of objectives, i.e., each producer’s profit, the system reliability, and the total generation cost. The GMS model has been solved by the group search optimizer with multiple producers (GSOMP) on two test systems. The simulation results show that the model is well solved by the GSOMP with a set of evenly distributed Pareto-optimal solutions obtained. The simulation results also illustrate that one producer’s profit conflicts with another one’s, that the total generation cost does not conflict with the profit of the producer possessing the cheapest units while the total generation cost conflicts with the other producers’ profits, and that the reliability objective conflicts with the other objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barot, H., Bhattacharya, K., 2008. Security coordinated maintenance scheduling in deregulation based on genco contribution to unserved energy. IEEE Trans. Power Syst., 23(4):1871–1882. [doi:10.1109/TPWRS.2008.2002296]

    Article  Google Scholar 

  • Burke, E.K., Smith, A.J., 2000. Hybrid evolutionary techniques for the maintenance scheduling problem. IEEE Trans. Power Syst., 15(1):122–128. [doi:10.1109/59.852110]

    Article  Google Scholar 

  • Chattopadhyay, D., Bhattacharya, K., Parikh, J., 1995. A systems approach to least-cost maintenance scheduling for an interconnected power system. IEEE Trans. Power Syst., 10(4):2002–2007. [doi:10.1109/59.476069]

    Article  Google Scholar 

  • Chen, L., Toyoda, J., 1991. Optimal generating unit maintenance scheduling for multi-area system with network constraints. IEEE Trans. Power Syst., 6(3):1168–1174. [doi:10.1109/59.119262]

    Article  Google Scholar 

  • Chen, X.D., Zhan, J.P., Wu, Q.H., et al., 2014. Multi-objective optimization of generation maintenance scheduling. IEEE Power & Energy Society General Meeting, p.1–5, accepted.

    Google Scholar 

  • Christiaanse, W.R., Palmer, A.H., 1972. A technique for the automated scheduling of the maintenance of generating facilities. IEEE Trans. Power App. Syst., PAS-91(1):137–144. [doi:10.1109/TPAS.1972.293323]

    Article  Google Scholar 

  • Conejo, A.J., Garcia-Bertrand, R., Diaz-Salazar, M., 2005. Generation maintenance scheduling in restructured power systems. IEEE Trans. Power Syst., 20(2):984–992. [doi:10.1109/TPWRS.2005.846078]

    Article  Google Scholar 

  • Deb, K., 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley and Sons, USA.

    MATH  Google Scholar 

  • Dopazo, J.F., Merrill, H.M., 1975. Optimal generator maintenance scheduling using integer programming. IEEE Trans. Power App. Syst., 94(5):1537–1545. [doi:10.1109/T-PAS.1975.31996]

    Article  Google Scholar 

  • El-Sharkh, M.Y., 2014. Clonal selection algorithm for power generators maintenance scheduling. Int. J. Electr. Power Energy Syst., 57:73–78. [doi:10.1016/j.ijepes.2013.11.051]

    Article  Google Scholar 

  • Feng, C., Wang, X., 2010. A competitive mechanism of unit maintenance scheduling in a deregulated environment. IEEE Trans. Power Syst., 25(1):351–359. [doi:10.1109/TPWRS.2009.2036469]

    Article  Google Scholar 

  • Feng, C., Wang, X., Li, F., 2009. Optimal maintenance scheduling of power producers considering unexpected unit failure. IET Gener. Transm. Distrib., 3(5):460–471. [doi:10.1049/iet-gtd.2008.0427]

    Article  Google Scholar 

  • Guo, C.X., Zhan, J.P., Wu, Q.H., 2012. Dynamic economic emission dispatch based on group search optimizer with multiple producers. Elect. Power Syst. Res., 86:8–16. [doi:10.1016/j.epsr.2011.11.015]

    Article  Google Scholar 

  • He, S., Wu, Q.H., Saunders, J.R., 2009. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans. Evol. Comput., 13(5):973–990. [doi:10.1109/TEVC.2009.2011992]

    Article  Google Scholar 

  • Heo, J.H., Kim, M.K., Park, G.P., et al., 2011. A reliability-centered approach to an optimal maintenance strategy in transmission systems using a genetic algorithm. IEEE Trans. Power Delivery, 26(4):2171–2179. [doi:10.1109/TPWRD.2011.2162752]

    Article  Google Scholar 

  • Hwang, C.L., Yoon, K., 1981. Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, New York, USA.

    Book  MATH  Google Scholar 

  • Kralj, B.L., Petrović, R., 1988. Optimal preventive maintenance scheduling of thermal generating units in power systems—a survey of problem formulations and solution methods. Eur. J. Oper. Res., 35(1):1–15. [doi:10.1016/0377-2217(88)90374-8]

    Article  Google Scholar 

  • Lu, G., Chung, C.Y., Wong, K.P., et al., 2008. Unit maintenance scheduling coordination mechanism in electricity market environment. IET Gener. Transm. Distrib., 2(5):646–654. [doi:10.1049/iet-gtd:20070126]

    Article  Google Scholar 

  • Marwali, M.K.C., Shahidehpour, S.M., 1998. Integrated generation and transmission maintenance scheduling with network constraints. IEEE Trans. Power Syst., 13(3):1063–1068. [doi:10.1109/59.709100]

    Article  Google Scholar 

  • Marwali, M.K.C., Shahidehpour, S.M., 1999. Long-term transmission and generation maintenance scheduling with network, fuel and emission constraints. IEEE Trans. Power Syst., 14(3):1160–1165. [doi:10.1109/59.780951]

    Article  Google Scholar 

  • Marwali, M.K.C., Shahidehpour, S.M., 2000. Coordination between long-term and short-term generation scheduling with network constraints. IEEE Trans. Power Syst., 15(3):1161–1167. [doi:10.1109/59.871749]

    Article  Google Scholar 

  • Mendoza, J.E., Lopez, M.E., Coello, C.A.C., et al., 2009. Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network. IET Gener. Transm. Distrib., 3(9):825–840. [doi:10.1049/iet-gtd.2009.0009]

    Article  Google Scholar 

  • Niknam, T., Doagou-Mojarrad, H., 2012. Multiobjective economic/emission dispatch by multiobjective thetasparticle swarm optimisation. IET Gener. Transm. Distrib., 6(5):363–377. [doi:10.1049/iet-gtd.2011.0698]

    Article  Google Scholar 

  • Pandzic, H., Conejo, A.J., Kuzle, I., et al., 2012. Yearly maintenance scheduling of transmission lines within a market environment. IEEE Trans. Power Syst., 27(1):407–415. [doi:10.1109/TPWRS.2011.2159743]

    Article  Google Scholar 

  • Pandzic, H. Conejo, A.J., Kuzle, I., 2013. An EPEC approach to the yearly maintenance scheduling of generating units. IEEE Trans. Power Syst., 28(2):922–930. [doi:10.1109/TPWRS.2012.2219326]

    Article  Google Scholar 

  • Saraiva, J.T., Pereira, M.L., Mendes, V.T., et al., 2011. A simulated annealing based approach to solve the generator maintenance scheduling problem. Elect. Power Syst. Res., 81(7):1283–1291. [doi:10.1016/j.epsr.2011.01.013]

    Article  Google Scholar 

  • Schlünz, E.B., van Vuuren, J.H., 2013. An investigation into the effectiveness of simulated annealing as a solution approach for the generator maintenance scheduling problem. Int. J. Electr. Power Energy Syst., 53:166–174. [doi:10.1016/j.ijepes.2013.04.010]

    Article  Google Scholar 

  • Shahidehpour, M., Marwali, M., 2000. Maintenance Scheduling in Restructured Power Systems. Kluwer Academic Pub, Norwell.

    Book  Google Scholar 

  • Subcommittee, P.M., 1979. IEEE reliability test system. IEEE Trans. Power App. Syst., PAS-98(6):2047–2054. [doi:10.1109/TPAS.1979.319398]

    Article  Google Scholar 

  • Tripathi, P.K., Bandyopadhyay, S., Pal, S.K., 2007. Multiobjective particle swarm optimization with time variant inertia and acceleration coefficients. Inform. Sci., 177(22):5033–5049. [doi:10.1016/j.ins.2007.06.018]

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, Y., Pham, H., 2011. A multi-objective optimization of imperfect preventive maintenance policy for dependent competing risk systems with hidden failure. IEEE Trans. Rel., 60(4):770–781. [doi:10.1109/TR.2011.2167779]

    Article  Google Scholar 

  • Wu, L., Shahidehpour, M., Li, T., 2008. GENCO’s risk-based maintenance outage scheduling. IEEE Trans. Power Syst., 23(1):127–136. [doi:10.1109/TPWRS.2007.913295]

    Article  MATH  Google Scholar 

  • Wu, Q.H., Lu, Z., Li, M.S., et al., 2008. Optimal placement of FACTS devices by a group search optimizer with multiple producer. IEEE Congress on Evolutionary Computation, p.1033–1039. [doi:10.1109/CEC.2008.4630923]

    Google Scholar 

  • Yang, F., Chang, C.S., 2009a. Multiobjective evolutionary optimization of maintenance schedules and extents for composite power systems. IEEE Trans. Power Syst., 24(4):1694–1702. [doi:10.1109/TPWRS.2009.2030354]

    Article  Google Scholar 

  • Yang, F., Chang, C.S., 2009b. Optimisation of maintenance schedules and extents for composite power systems using multi-objective evolutionary algorithm. IET Gener. Transm. Distrib., 3(10):930–940. [doi:10.1049/iet-gtd.2009.0172]

    Article  MathSciNet  Google Scholar 

  • Yang, F., Kwan, C.M., Chang, C.S., 2008. Multiobjective evolutionary optimization of substation maintenance using decision-varying Markov model. IEEE Trans. Power Syst., 23(3):1328–1335. [doi:10.1109/TPWRS.2008.922637]

    Article  Google Scholar 

  • Yare, Y., Venayagamoorthy, G.K., Aliyu, U.O., 2008. Optimal generator maintenance scheduling using a modified discrete PSO. IET Gener. Transm. Distrib., 2(6):834–846. [doi:10.1049/iet-gtd:20080030]

    Article  Google Scholar 

  • Yellen, J., Al-Khamis, T.M., Vemuri, S., et al., 1992. A decomposition approach to unit maintenance scheduling. IEEE Trans. Power Syst., 7(2):726–733. [doi:10.1109/59.141779]

    Article  Google Scholar 

  • Zhan, J.P., Yin, Y.J., Guo, C.X., et al., 2011. Integrated maintenance scheduling of generators and transmission lines based on fast group searching optimizer. IEEE Power and Energy Society General Meeting, p.1–6. [doi:10.1109/PES.2011.6039246]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang-xin Guo.

Additional information

Project supported by the National High-Tech R&D Program (863) of China (No. 2011AA05A120), the National Basic Research Program (973) of China (No. 2012CB215100), and the Zhejiang Provincial Natural Science Foundation of China (No. LZ12E07002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Jp., Guo, Cx., Wu, Qh. et al. Generation maintenance scheduling based on multiple objectives and their relationship analysis. J. Zhejiang Univ. - Sci. C 15, 1035–1047 (2014). https://doi.org/10.1631/jzus.C1400030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400030

Key words

CLC number

Navigation