Skip to main content
Log in

A new parallel meshing technique integrated into the conformal FDTD method for solving complex electromagnetic problems

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

A new efficient parallel finite-difference time-domain (FDTD) meshing algorithm, based on the ray tracing technique, is proposed in this paper. This algorithm can be applied to construct various FDTD meshes, such as regular and conformal ones. The Microsoft F# language is used for the algorithm coding, where all variables are unchangeable with its parallelization advantage being fully exploited. An improved conformal FDTD algorithm, also integrated with an improved surface current algorithm, is presented to simulate some complex 3D models, such as a sphere ball made of eight different materials, a tank, a J-10 aircraft, and an aircraft carrier with 20 aircrafts. Both efficiency and capability of the developed parallel FDTD algorithm are validated. The algorithm is applied to characterize the induced surface current distribution on an aircraft or a warship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benkler, S., Chavannes, N., Kuster, N., 2008. Mastering conformal meshing for complex CAD-based C-FDTD simulations. IEEE Antennas Propag. Mag., 50(2):45–57. [doi:10.1109/MAP.2008.4562256]

    Article  Google Scholar 

  • Flubacher, R., Luebbers, R., 2003. FDTD mesh generation using computer graphics technology. IEEE Antennas and Propagation Society Int. Symp., p.333–336. [doi:10.1109/APS.2003.1217464]

    Google Scholar 

  • Guiffaut, C., Mahdjoubi, K., 2001. A parallel FDTD algorithm using the MPI library. IEEE Antennas Propag. Mag., 43(2):94–103. [doi:10.1109/74.924608]

    Article  Google Scholar 

  • Hadi, M.F., Mahmoud, S.F., 2007. Optimizing the compact-FDTD algorithm for electrically large wave-guiding structures. Prog. Electromagn. Res., 75:253–269. [doi:10. 2528/PIER07060703]

    Article  Google Scholar 

  • Hill, J., 1996. Efficient Implementation of Mesh Generation and FDTD Simulation of Electromagnetic Fields. MS Thesis, Worcester Polytechnic Institute, MA, USA.

    Google Scholar 

  • Hsu, H.T., Kuo, F.Y., Chou, H.T., 2009. Convergence study of current sampling profiles for antenna design in the presence of electrically large and complex platforms using FIT-UTD hybridization approach. Prog. Electromagn. Res., 99:195–209. [doi:10.2528/PIER09092404]

    Article  Google Scholar 

  • Juntunen, J.S., Tsiboukis, T.D., 2000. Reduction of numerical dispersion in FDTD method through artificial anisotropy. IEEE Trans. Microw. Theory Tech., 48(4):582–588. [doi:10.1109/22.842030]

    Article  Google Scholar 

  • Kim, J., Teixeira, F.L., 2011. Parallel and explicit finite-element time-domain method for Maxwell’s equations. IEEE Trans. Antennas Propag., 59(6):2350–2356. [doi:10. 1109/TAP.2011.2143682]

    Article  MathSciNet  Google Scholar 

  • Kong, L.Y., Wang, J., Yin, W.Y., 2012. A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP). Prog. Electromagn. Res., 126:355–373. [doi:10.2528/PIER11112702]

    Article  Google Scholar 

  • Lei, J.Z., Liang, C.H., Ding, W., et al., 2008. EMC analysis of antennas mounted on electrically large platforms with parallel FDTD method. Prog. Electromagn. Res., 84:205–220. [doi:10.2528/PIER08071303]

    Article  Google Scholar 

  • Shan, X., Guan, S., Liu, Z., et al., 2013. A new energy harvester using a piezoelectric and suspension electromagnetic mechanism. J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 14(12):890–897. [doi:10.1631/jzus.A1300210]

    Article  Google Scholar 

  • Srisukh, Y., Nehrbass, J., Teixeira, F.L., et al., 2002. An approach for automatic grid generation in three-dimensional FDTD simulations of complex geometries. IEEE Antennas Propag. Mag., 44(4):75–80. [doi:10.1109/MAP.2002.1043151]

    Article  Google Scholar 

  • Taflove, A., Hagness, S.C., 2000. Computational Electrodynamics: the Finite-Difference Time-Domain Method (2nd Ed.). Artech House, Norwood, MA, USA.

    Google Scholar 

  • Vaccari, A., Lesina, A.C., Cristoforetti, L., et al., 2011. Parallel implementation of a 3D subgridding FDTD algorithm for large simulations. Prog. Electromagn. Res., 120:263–292.

    Google Scholar 

  • Wang, H., Tang, L., Guo, Y., et al., 2014. A 2DOF hybrid energy harvester based on combined piezoelectric and electromagnetic conversion mechanisms. J. Zhejiang Univ.-Sci. A (Appl. Phys. & Eng.), 15(9):711–722. [doi:10. 1631/jzus.A1400124]

    Article  Google Scholar 

  • Wang, J., Yin, W.Y., 2013. Development of a novel FDTD (2, 4)-compatible conformal scheme for electromagnetic computations of complex curved PEC objects. IEEE Trans. Antennas Propag., 61(1):299–309. [doi:10.1109/TAP.2012.2216851]

    Article  MathSciNet  Google Scholar 

  • Xiong, R., Chen, B., Han, J.J., et al., 2012. Transient resistance analysis of large grounding systems using the FDTD method. Prog. Electromagn. Res., 132:159–175. [doi:10. 2528/PIER12082601]

    Article  Google Scholar 

  • Yang, M., Chen, Y., 1999. AutoMesh: an automatically adjustable, nonuniform, orthogonal FDTD mesh generator. IEEE Antennas Propag. Mag., 41(2):13–19. [doi:10.1109/74.769687]

    Article  Google Scholar 

  • Yu, W.H., Mittra, R., 2000. A conformal FDTD software package modeling antennas and microstrip circuit components. IEEE Antennas Propag. Mag., 42(5):28–39. [doi:10.1109/74.883505]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Additional information

Project supported in part by the National Natural Science Foundation of China (No. 60831002) and Zhejiang Provincial Natural Science Foundation of China (No. LZF010001)

ORCID: Yang GUO, http://orcid.org/0000-0002-5681-0606

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Wang, Xh. & Hu, J. A new parallel meshing technique integrated into the conformal FDTD method for solving complex electromagnetic problems. J. Zhejiang Univ. - Sci. C 15, 1087–1097 (2014). https://doi.org/10.1631/jzus.C1400135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400135

Key words

CLC number

Navigation