Skip to main content
Log in

A fast classification scheme and its application to face recognition

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

To overcome the high computational complexity in real-time classifier design, we propose a fast classification scheme. A new measure called ‘reconstruction proportion’ is exploited to reflect the discriminant information. A novel space called the ‘reconstruction space’ is constructed according to the reconstruction proportions. A point in the reconstruction space denotes the case of a sample reconstructed using training samples. This is used to search for an optimal mapping from the conventional sample space to the reconstruction space. When the projection from the sample space to the reconstruction space is obtained, a new sample after mapping to the new discriminant space would be classified quickly according to the reconstruction proportions in the reconstruction space. This projection technique results in a diversion of time-consuming calculations from the classification stage to the training stage. Though training time is prolonged, it is advantageous in that classification problems such as identification can be solved in real time. Experimental results on the ORL, Yale, YaleB, and CMU PIE face databases showed that the proposed fast classification scheme greatly outperforms conventional classifiers in classification accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abate, A.F., Nappi, M., Riccio, D., Sabatino, G., 2007. 2D and 3D face recognition: a survey. Pattern Recogn. Lett., 28(14):1885–1906. [doi:10.1016/j.patrec.2006.12.018]

    Article  Google Scholar 

  • Athitsos, V., Alon, J., Sclaroff, S., Kollios, G., 2008. Boostmap: an embedding method for efficient nearest neighbor retrieval. IEEE Trans. Pattern Anal. Mach. Intell., 30(1):89–104. [doi:10.1109/TPAMI.2007.1140]

    Article  Google Scholar 

  • Baraniuk, R.G., 2007. Compressive sensing. IEEE Signal Process. Mag., 24(4):118–121. [doi:10.1109/MSP.2007.4286571]

    Article  Google Scholar 

  • Bax, E., 2000. Validation of nearest neighbor classifiers. IEEE Trans. Inf. Theory, 46(7):2746–2752. [doi:10.1109/18.887892]

    Article  MathSciNet  MATH  Google Scholar 

  • Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J., 1997. Eigenfaces vs. Fisher-faces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell., 19(7):711–720. [doi:10.1109/34.598228]

    Article  Google Scholar 

  • Belkin, M., Niyogi, P., 2003. Laplacian eigenmaps for dimensionality reduction and data representation. Neur. Comput., 15(6):1373–1396. [doi:10.1162/089976603321780 317]

    Article  MATH  Google Scholar 

  • Candes, E.J., Wakin, M.B., 2008. An introduction to compressive sampling. IEEE Signal Process. Mag., 25(2):21–30. [doi:10.1109/MSP.2007.914731]

    Article  Google Scholar 

  • Cevikalp, H., Triggs, B., Polikar, R., 2008. Nearest Hyperdisk Methods for High-Dimensional Classification. Proc. 25th Int. Conf. on Machine Learning, p.120–127. [doi:10.1145/1390156.1390172]

    Chapter  Google Scholar 

  • Chen, C.J., 2010. Development of a Neural Classifier with Genetic Algorithm for Structural Vibration Suppression. Proc. Int. Conf. on Machine Learning and Cybernetics, p.2788–2795. [doi:10.1109/ICMLC.2010.5580789]

    Google Scholar 

  • Donoho, D.L., 2006. Compressed sensing. IEEE Trans. Inf. Theory, 52(4):1289–1306. [doi:10.1109/TIT.2006.871582]

    Article  MathSciNet  Google Scholar 

  • Duda, R., Hart, P., Stork, D., 2001. Pattern Classification (2nd Ed.). John Wiley & Sons, New York.

    MATH  Google Scholar 

  • He, X.F., Niyogi, P., 2003. Locality Preserving Projections. Advances in Neural Information Processing System 16.

    Google Scholar 

  • He, X.F., Cai, D., Yan, S.C., Zhang, H.J., 2005. Neighborhood Preserving Embedding. IEEE Int. Conf. on Computer Vision, p.1208–1213. [doi:10.1109/ICCV.2005.167]

    Google Scholar 

  • Ho, J., Yang, M., Lim, J., Lee, K., Kriegman, D., 2003. Clustering Appearances of Objects under Varying Illumination Conditions. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.11–18. [doi:10.1109/CVPR.2003.1211332]

    Google Scholar 

  • Jain, A., Chandrasekaran, B., 1982. Dimensionality and Samples Size Considerations in Pattern Recognition Practice. Classification Pattern Recognition and Reduction of Dimensionality p.835–855. [doi:10.1016/S0169-7161(82)02 042-2]

    Chapter  Google Scholar 

  • Jiang, X.D., Mandal, B., Kot, A., 2008. Eigenfeature regularization and extraction in face recognition. IEEE Trans. Pattern Anal. Mach. Intell., 30(3):383–394. [doi:10.1109/TPAMI.2007.70708]

    Article  Google Scholar 

  • Keller, J.M., Gray, M.R., Givens, J.A., 1985. A fuzzy K-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern., 15(4):580–585. [doi:10.1109/TSMC.1985.6313426]

    Article  Google Scholar 

  • Li, H.F., Jiang, T., Zhang, K.S., 2006. Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neur. Networks, 17(1):157–165. [doi:10.1109/TNN.2005.860852]

    Article  Google Scholar 

  • Li, S.Z., Lu, J., 1999. Face recognition using the nearest feature line method. IEEE Trans. Neur. Networks, 10(2):439–443. [doi:10.1109/72.750575]

    Article  Google Scholar 

  • Liu, Y.G., Sam, S.Z., Li, C.G., You, Z.S., 2011. K-NS: a classifier by the distance to the nearest subspace. IEEE Trans. Neur. Networks, 22(8):1256–1268. [doi:10.1109/TNN.2011.2153210]

    Article  Google Scholar 

  • Meo, R., Bachar, D., Ienco, D., 2012. LODE: a distance-based classifier built on ensembles of positive and negative observations. Pattern Recogn., 45(4):1409–1425. [doi:10.1016/j.patcog.2011.10.015]

    Article  Google Scholar 

  • Mullin, M., Sukthankar, R., 2000. Complete Cross-Validation for Nearest Neighbor Classifiers. Proc. Int. Conf. on Machine Learning, p.639–646.

    Google Scholar 

  • Psaltis, D., Snapp, R., Venkatesh, S., 1994. On the finite sample performance of the nearest neighbor classifier. IEEE Trans. Inf. Theory, 40(3):820–837. [doi:10.1109/18.335 893]

    Article  MATH  Google Scholar 

  • Qiao, L.S., Chen, S.C., Tan, X.Y., 2010. Sparsity preserving projections with applications to face recognition. Pattern Recogn., 43(1):331–341. [doi:10.1016/j.patcog.2009.05.005]

    Article  MATH  Google Scholar 

  • Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500): 2323–2326. [doi:10.1126/science.290.5500.2323]

    Article  Google Scholar 

  • Singh, C., Walia, E., Mittal, N., 2012. Robust two-stage face recognition approach using global and local features. Vis. Comput., 28(11):1085–1098. [doi:10.1007/s00371-011-06 59-7]

    Article  Google Scholar 

  • Stefan, A., Athitsos, V., Yuan, Q., Sclaroff, S., 2009. Reducing Jointboost-Based Multiclass Classification to Proximity Search. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.589–596. [doi:10.1109/CVPR.2009.5206 687]

    Google Scholar 

  • Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 29(5500):2319–2323. [doi:10.1126/science.290.5500.2319]

    Article  Google Scholar 

  • Turk, M., Pentland, A., 1991. Eigenface for recognition. J. Cogn. Neurosci., 3(1):71–86. [doi:10.1162/jocn.1991.3.1.71]

    Article  Google Scholar 

  • Vincent, P., Bengio, Y., 2002. K-Local Hperplane and Convex Distance Nearest Neighbor Algorithms. Advances in Neural Information Processing Systems, p.985–992.

    Google Scholar 

  • Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y., 2009. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell., 31(2):210–227. [doi:10.1109/TPAMI.2008.79]

    Article  Google Scholar 

  • Zhang, B., Srihari, S.N., 2004. Fast k-nearest neighbor classification using cluster-based trees. IEEE Trans. Pattern Anal. Mach. Intell., 26(4):525–528. [doi:10.1109/TPAMI.2004.1265868]

    Article  Google Scholar 

  • Zhang, D.Q., Chen, S.C., Zhou, Z.H., 2006. Learning the kernel parameters in kernel minimum distance classifier. Pattern Recogn., 39(1):133–135. [doi:10.1016/j.patcog.2005.08.001]

    Article  MATH  Google Scholar 

  • Zhang, P., Zhu, X.Q., Tan, J.L., Guo, L., 2010. Classifier and Cluster Ensembles for Mining Concept Drifting Data Streams. Proc. IEEE Int. Conf. on Data Mining, p.1175–1180. [doi:10.1109/ICDM.2010.125]

    Google Scholar 

  • Zhang, X.Z., Gao, Y.S., 2009. Face recognition across pose: a review. Pattern Recogn., 42(11):2876–2896. [doi:10.1016/j.patcog.2009.04.017]

    Article  Google Scholar 

  • Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J., 2003. Face recognition: a literature survey. ACM Comput. Surv., 35(4):399–458. [doi:10.1145/954339.954342]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-hu Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Xh., Tan, Yq. & Zheng, Gm. A fast classification scheme and its application to face recognition. J. Zhejiang Univ. - Sci. C 14, 561–572 (2013). https://doi.org/10.1631/jzus.CIDE1309

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.CIDE1309

Key words

CLC number

Navigation