Determination and Improvement of Spatial Resolution obtained by Optical Remote Sensing Systems
Authors
Department
Mathematisch-Naturwissenschaftliche Fakultät
Collections
Loading...
Abstract
Das Bereitstellen von Parametern bezüglich Auflösungsvermögen und effektiver Auflösung ist ein gut erforschtes Wissenschaftsfeld, dennoch sind noch einige offen Fragen zu klären, wenn eine standardisierte Erhebung angestrebt wird. Zu diesem Zweck ist im Rahmen der vorliegenden Arbeit ein Framework definiert und mathematisch und methodologisch beschrieben worden unter Einbeziehung aller untergeordneten Prozesse. Weiterhin liefert sie einen detaillierten Überblick zu den verwendeten Methoden und Strukturen, um räumliche Auflösung zu messen. Das zuvor definierte Framework wird darüber hinaus genutzt, um alle zugehörigen Probleme bezüglich eines genormten Prozesses zu identifizieren und zu lösen. Der so definierte Prozess ist außerdem Teil der bevorstehenden, neuen Norm: DIN 18740-8.
Im Hinblick auf die Norm sind alle Messeinflüsse an den möglichen Stellen quantifiziert worden und an Stellen, wo dies nicht möglich ist, wurden Vorkehrungen definiert, die diese Einflüsse mindern. Darüber hinaus wurde ein zugehöriges Softwaretool entwickelt, das ebenfalls die neue Norm unterstützt.
Als weiterer Schwerpunkt dieser Arbeit wurde ein Verfahren zur Verbesserung der räumlichen Auflösung entwickelt und bewertet. Das zugehörige Softwaretool kombiniert dabei verschiedene Super-Resolution-Ansätze unter Einbeziehung zusätzlicher Kenntnis über die Bildqualität.
Der neuartige Super-Resolution-Ansatz verbessert die räumliche Auflösung von Luftbildern und True-Ortho-Mosaiken indem er ein Set von niedrig aufgelösten Rohbildern, deren optimierter, äußerer und innerer Orientierung und die abgeleitete 3D-Oberfläche als Eingangsdaten akzeptiert. Anschließend werden ein oder mehrere hochaufgelöste Bilder als hybride Kombination von klassischen Super-Resolution-Methoden und De-Mosaikierung berechnet, unter Berücksichtigung der photogrammetrischen Projektionen auf die 3D-Oberfläche. Dabei werden Limitierungen der Bildkoregistrierung mit üblich verwendeten Optical-Flow-Ansätzen überwunden.
Although acquisition of resolving power and effective spatial resolution is a well-studied field of research, there are still several scientific questions to be answered when it comes to a standardized determination. Therefore, this thesis provides a description of a framework for the imaging process of remote sensing sensors mathematically and methodologically including imaging components and subsequent processes. Furthermore, a detailed review for different structures and methods to measure spatial resolution is included. Aforementioned framework then is utilized to identify related issues to a standardized process obtaining spatial resolution parameters as an image quality criterion to support an upcoming standard DIN 18740-8. With respect to define the norm-procedure every measurement influence is quantified where possible and in other cases arrangements are specified to diminish their influence. Moreover, the development of an associated software measurement tool has been accomplished as part of this thesis, which also supports the norm for aerial image quality, spatial resolution in particular. As part of a further objective of this thesis, a super-resolution approach to improve spatial resolution of aerial images has been developed and evaluated. The related software tool is able to combine different super-resolution techniques and includes known image quality parameter in subsequent calculations. The novel super-resolution approach improves spatial resolution of aerial imagery and true ortho-mosaics by taking a set of multiple low-resolved raw images (color filter array), their optimized exterior and interior orientation parameters and the derived 3D-surface as input. Then, one or more super-resolved images are calculated as a hybrid of classic super-resolution method and demosaicing while considering photogrammetric back-projections onto the 3D-surface. Thereby, limitations of image co-registration with commonly used optical flow approaches can be neglected.
Although acquisition of resolving power and effective spatial resolution is a well-studied field of research, there are still several scientific questions to be answered when it comes to a standardized determination. Therefore, this thesis provides a description of a framework for the imaging process of remote sensing sensors mathematically and methodologically including imaging components and subsequent processes. Furthermore, a detailed review for different structures and methods to measure spatial resolution is included. Aforementioned framework then is utilized to identify related issues to a standardized process obtaining spatial resolution parameters as an image quality criterion to support an upcoming standard DIN 18740-8. With respect to define the norm-procedure every measurement influence is quantified where possible and in other cases arrangements are specified to diminish their influence. Moreover, the development of an associated software measurement tool has been accomplished as part of this thesis, which also supports the norm for aerial image quality, spatial resolution in particular. As part of a further objective of this thesis, a super-resolution approach to improve spatial resolution of aerial images has been developed and evaluated. The related software tool is able to combine different super-resolution techniques and includes known image quality parameter in subsequent calculations. The novel super-resolution approach improves spatial resolution of aerial imagery and true ortho-mosaics by taking a set of multiple low-resolved raw images (color filter array), their optimized exterior and interior orientation parameters and the derived 3D-surface as input. Then, one or more super-resolved images are calculated as a hybrid of classic super-resolution method and demosaicing while considering photogrammetric back-projections onto the 3D-surface. Thereby, limitations of image co-registration with commonly used optical flow approaches can be neglected.
Description
Keywords
räumliche Auflösung, Siemensstern, DIN, Super-Resolution, spatial resolution, Siemens-star, DIN, super-resolution
Dewey Decimal Classification
000 Informatik, Informationswissenschaft, allgemeine Werke
Citation
Meißner, H. (2021). Determination and Improvement of Spatial Resolution obtained by Optical Remote Sensing Systems. https://doi.org/10.18452/22348