Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Modified Drug Delivery Systems for Veterinary Use: Pharmaceutical Development and Applications

Author(s): Eliana B. Souto*, Catarina I. Barbosa, Iara Baldim, Joana R. Campos, Ana R. Fernandes, Priscila G. Mazzola, Tatiana Andreani, Isabel R. Dias, Alessandra Durazzo, Massimo Lucarini, Atanas G. Atanasov, Amélia M. Silva and Antonello Santini*

Volume 19, Issue 1, 2023

Published on: 19 August, 2022

Article ID: e040422203061 Pages: 8

DOI: 10.2174/1573407218666220404110837

Price: $65

Abstract

Scientific research in the field of veterinary pharmacology has provided new opportunities for the development of modified release dosage forms, with the aim to improve therapeutic efficacy and reduce animal stress. The formulation of classical drug molecules with advanced biomaterials has become a new approach to increasing drug bioavailability and improving the therapeutic outcome. The main reasons for the development of modified drug delivery systems for animal use are the need to reduce the animal stress caused by the handling and administration of the drug and reduce the cost in financial and chronological terms. This review discusses the most common delivery systems used in veterinary and the difficulties encountered in innovating therapeutic options in the field.

Keywords: Veterinary formulations, oral drug delivery, intravaginal administration, eye administration, parenteral administration, therapeutic efficacy.

Graphical Abstract
[1]
da Silva, C.F.; Almeida, T.; de Melo, B.R.; Cardoso, J.C.; Morsink, M.; Souto, E.B.; Severino, P. New trends in drug delivery systems for veterinary applications. Pharm. Nanotechnol., 2021, 9(1), 15-25.
[http://dx.doi.org/10.2174/2211738508666200613214548] [PMID: 32533821]
[2]
Moulin, G.; Cavalié, P.; Pellanne, I.; Chevance, A.; Laval, A.; Millemann, Y.; Colin, P.; Chauvin, C. A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005. J. Antimicrob. Chemother., 2008, 62(3), 617-625.
[http://dx.doi.org/10.1093/jac/dkn213] [PMID: 18490374]
[3]
Ramteke, K.H.; Joshi, S.A.; Dighe, P.A.; Kharat, A.R. Veterinary pharmaceutical dosage forms: A technical note. Austin Therapeutics., 2014, 1(1), 10.
[4]
Holowka, E.P.; Bhatia, S.K. Controlled-release systems. In: Drug Delivery: Materials Design and Clinical Perspective; Springer: New York, 2014, pp. 7-62.
[5]
Becker, D.E. Pharmacokinetic considerations for moderate and deep sedation. Anesth. Prog., 2011, 58(4), 166-172.
[http://dx.doi.org/10.2344/0003-3006-58.4.166] [PMID: 22168806]
[6]
Winzenburg, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Adv. Drug Deliv. Rev., 2004, 56(10), 1453-1466.
[http://dx.doi.org/10.1016/j.addr.2004.02.008] [PMID: 15191792]
[7]
Niazi, S.K. Handbook of pharmaceutical manufacturing formulations: Sterile products, 3rd ed; CRC Press: Boca Raton, 2019, pp. 1-452.
[8]
U.K., Essays The advantages and limitations of oral route formulations biology essay., 2013. Available from: http://www.ukessays.com/essays/biology/the-advantages-and-limitations-of-oral-route-formulations-biology-essay.php?vref=1 (Accessed September 5, 2021).
[9]
Karasov, W.H.; Douglas, A.E. Comparative digestive physiology. Compr. Physiol., 2013, 3(2), 741-783.
[http://dx.doi.org/10.1002/cphy.c110054] [PMID: 23720328]
[10]
Augsburger, L.L.; Hoag, S.W. Pharmaceutical dosage forms-tablets; CRC Press: Boca Raton, 2016.
[http://dx.doi.org/10.1201/b15115]
[11]
Urquhart, J. Controlled drug delivery: Therapeutic and pharmacological aspects. J. Intern. Med., 2001, 249(S741), 75-94.
[http://dx.doi.org/10.1046/j.1365-2796.2001.00758.x] [PMID: 11123501]
[12]
Vandamme, T.F.; Ellis, K.J. Issues and challenges in developing ruminal drug delivery systems. Adv. Drug Deliv. Rev., 2004, 56(10), 1415-1436.
[http://dx.doi.org/10.1016/j.addr.2004.02.011] [PMID: 15191790]
[13]
Rothen-Weinhold, A.; Gurny, R.; Dahn, M. Formulation and technology aspects of conrolled drug delivery in animals. Pharm. Sci. Technol. Today, 2000, 3(7), 222-231.
[http://dx.doi.org/10.1016/S1461-5347(00)00276-5] [PMID: 10884678]
[14]
Medlicott, N.J.; Waldron, N.A.; Foster, T.P. Sustained release veterinary parenteral products. Adv. Drug Deliv. Rev., 2004, 56(10), 1345-1365.
[http://dx.doi.org/10.1016/j.addr.2004.02.005] [PMID: 15191786]
[15]
Rathbone, M.J.; Martinez, M.N. Modified release drug delivery in veterinary medicine. Drug Discov. Today, 2002, 7(15), 823-829.
[http://dx.doi.org/10.1016/S1359-6446(02)02362-0] [PMID: 12546970]
[16]
Refaai, W.; Gad, M.; Mahmmod, Y. Association of claw disorders with subclinical intramammary infections in Egyptian dairy cows. Vet. World, 2017, 10(3), 358-362.
[http://dx.doi.org/10.14202/vetworld.2017.358-362] [PMID: 28435201]
[17]
Desmond, B.J. Veterinary drug formulations for animal health care: An overview. J. Control. Release, 1988, 8(1), 5-13.
[http://dx.doi.org/10.1016/0168-3659(88)90094-6]
[18]
Bradley, A.J.; Green, M.J. Factors affecting cure when treating bovine clinical mastitis with cephalosporin-based intra mammary preparations. J. Dairy Sci., 2009, 92(5), 1941-1953.
[http://dx.doi.org/10.3168/jds.2008-1497] [PMID: 19389951]
[19]
Olde Riekerink, R.G.; Barkema, H.W.; Veenstra, S.; Poole, D.E.; Dingwell, R.T.; Keefe, G.P. Prevalence of contagious mastitis pathogens in bulk tank milk in Prince Edward Island. Can. Vet. J., 2006, 47(6), 567-572.
[PMID: 16808229]
[20]
Jadhav, P.; Tarate, S.; Bhuvana, M.; Das, D.; Shome, B. Somatic cell count as a monitoring system for hygienic milk production in India: A review. J. Dairy. Foods Home Sci., 2016, 35(4), 270-277.
[http://dx.doi.org/10.18805/ajdfr.v35i4.6624]
[21]
Norman, H.D.; Lombard, J.E.; Wright, J.R.; Kopral, C.A.; Rodriguez, J.M.; Miller, R.H. Consequence of alternative standards for bulk tank somatic cell count of dairy herds in the United States. J. Dairy Sci., 2011, 94(12), 6243-6256.
[http://dx.doi.org/10.3168/jds.2011-4645] [PMID: 22118112]
[22]
Norman, H.D.; Miller, R.H.; Wright, J.R.; Wiggans, G.R. Herd and state means for somatic cell count from dairy herd improvement. J. Dairy Sci., 2000, 83(12), 2782-2788.
[http://dx.doi.org/10.3168/jds.S0022-0302(00)75175-7] [PMID: 11132847]
[23]
Taponen, S.; Liski, E.; Heikkilä, A.M.; Pyörälä, S. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J. Dairy Sci., 2017, 100(1), 493-503.
[http://dx.doi.org/10.3168/jds.2016-11465] [PMID: 28341052]
[24]
Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial biofilms. Pathog. Dis., 2016, 74(3)ftw006
[25]
Pyörälä, S. Treatment of mastitis during lactation. Ir. Vet. J., 2009, 62(S4)(Suppl. 4), S40-S44.
[http://dx.doi.org/10.1186/2046-0481-62-S4-S40] [PMID: 22081939]
[26]
Krömker, V.; Leimbach, S. Mastitis treatment-reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim., 2017, 52(Suppl. 3), 21-29.
[http://dx.doi.org/10.1111/rda.13032] [PMID: 28815847]
[27]
Chaisri, W.; Hennink, W.E.; Okonogi, S. Preparation and characterization of cephalexin loaded PLGA microspheres. Curr. Drug Deliv., 2009, 6(1), 69-75.
[http://dx.doi.org/10.2174/156720109787048186] [PMID: 19418958]
[28]
Chaisri, W.; Hennink, W.E.; Ampasavate, C.; Okonogi, S. Cephalexin microspheres for dairy mastitis: Effect of preparation method and surfactant type on physicochemical properties of the microspheres. AAPS PharmSciTech, 2010, 11(2), 945-951.
[http://dx.doi.org/10.1208/s12249-010-9453-5] [PMID: 20509056]
[29]
Rathbone, M.J. Delivering drugs to farmed animals using controlled release science and technology. IeJSME., 2012, 6(Suppl. 1), S118-S128.
[30]
Helbling, I.M.; Luna, J.A. Progesterone administration in planned reproduction of cattle. Int. J. Med. Biol. Front., 2017, 23(1), 31-71.
[31]
Swelum, A.A.; Alowaimer, A.N.; Abouheif, M.A. Use of fluorogestone acetate sponges or controlled internal drug release for estrus synchronization in ewes: Effects of hormonal profiles and reproductive performance. Theriogenology, 2015, 84(4), 498-503.
[http://dx.doi.org/10.1016/j.theriogenology.2015.03.018] [PMID: 26081136]
[32]
Walsh, R.B.; LeBlanc, S.J.; Vernooy, E.; Leslie, K.E. Safety of a progesterone-releasing intravaginal device as assessed from vaginal mucosal integrity and indicators of systemic inflammation in postpartum dairy cows. Can. J. Vet. Res., 2008, 72(1), 43-49.
[PMID: 18214161]
[33]
Kurup, K.R.; Parikh, P.V.; Mahla, J.K.; Ratnu, D.A. Optimized ophthalmic: Advances in the treatment of ocular diseases in animals. Biomed. J. Sci. Tech. Res., 2017, 1(6), 1617-1620.
[34]
Gurny, R.; Kaltsatos, V.; Deshpande, A.A.; Zignani, M.; Percicot, C.; Baeyens, V. Ocular drug delivery in veterinary medicine. Adv. Drug Deliv. Rev., 1997, 28(3), 335-361.
[http://dx.doi.org/10.1016/S0169-409X(97)00088-4] [PMID: 10837574]
[35]
Gurtler, F.; Kaltsatos, V.; Boisramé, B.; Gurny, R. Long-acting soluble bioadhesive ophthalmic drug insert (BODI) containing gentamicin for veterinary use: Optimization and clinical investigation. J. Control. Release, 1995, 33(2), 231-236.
[http://dx.doi.org/10.1016/0168-3659(94)00096-D]
[36]
Mazet, R.; Yaméogo, J.B.G.; Wouessidjewe, D.; Choisnard, L.; Gèze, A. Recent advances in the design of topical ophthalmic delivery systems in the treatment of ocular surface inflammation and their biopharmaceutical evaluation. Pharmaceutics, 2020, 12(6), 570.
[http://dx.doi.org/10.3390/pharmaceutics12060570] [PMID: 32575411]
[37]
Magnusson, B.M.; Walters, K.A.; Roberts, M.S. Veterinary drug delivery: Potential for skin penetration enhancement. Adv. Drug Deliv. Rev., 2001, 50(3), 205-227.
[http://dx.doi.org/10.1016/S0169-409X(01)00158-2] [PMID: 11500228]
[38]
Taylor, M.A. Recent developments in ectoparasiticides. Vet. J., 2001, 161(3), 253-268.
[http://dx.doi.org/10.1053/tvjl.2000.0549] [PMID: 11352483]
[39]
Riviere, J.E.; Papich, M.G. Potential and problems of developing transdermal patches for veterinary applications. Adv. Drug Deliv. Rev., 2001, 50(3), 175-203.
[http://dx.doi.org/10.1016/S0169-409X(01)00157-0] [PMID: 11500227]
[40]
Mills, P.C.; Cross, S.E. Transdermal drug delivery: Basic principles for the veterinarian. Vet. J., 2006, 172(2), 218-233.
[http://dx.doi.org/10.1016/j.tvjl.2005.09.006] [PMID: 16324855]
[41]
Papich, M.G. Drug compounding for veterinary patients. AAPS J., 2005, 7(2), E281-E287.
[http://dx.doi.org/10.1208/aapsj070229] [PMID: 16353910]
[42]
Ahmed, I.; Kasraian, K. Pharmaceutical challenges in veterinary product development. Adv. Drug Deliv. Rev., 2002, 54(6), 871-882.
[http://dx.doi.org/10.1016/S0169-409X(02)00074-1] [PMID: 12363436]
[43]
Gonçalves, C.S.; Polli, S.A.L.; Martins dos Santos, A.; Fonseca-Santos, B.; Duque, R.W.; Daflon, M.P.; Chorilli, M.; Oliveira Villanova, J.C. Polymeric-based drug delivery systems for veterinary use: State of the art. 604, 120756.
[44]
Wyse, C.A.; McLellan, J.; Dickie, A.M.; Sutton, D.G.; Preston, T.; Yam, P.S. A review of methods for assessment of the rate of gastric emptying in the dog and cat: 1898-2002. J. Vet. Intern. Med., 2003, 17(5), 609-621.
[PMID: 14529126]
[45]
Sutton, S.C. Companion animal physiology and dosage form performance. Adv. Drug Deliv. Rev., 2004, 56(10), 1383-1398.
[http://dx.doi.org/10.1016/j.addr.2004.02.013] [PMID: 15191788]
[46]
Gratzek, A.T.; Kaswan, R.L.; Martin, C.L.; Champagne, E.S.; White, S.L. Ophthalmic cyclosporine in equine keratitis and keratouveitis: 11 cases. Equine Vet. J., 1995, 27(5), 327-333.
[http://dx.doi.org/10.1111/j.2042-3306.1995.tb04066.x] [PMID: 8654346]
[47]
Boda, C.; Liège, P.; Rème, C.A. Evaluation of owner compliance with topical treatment of acute otitis externa in dogs: A comparative study of two auricular formulations. Int. J. Appl. Res. Vet. Med., 2011, 9(2), 157.
[48]
Sharma, T; Sanjay, ST; Zhoua, W; Doua, M Recent advances of controlled drug delivery using microfuidic platforms., 2018, 128, 3- 28.
[49]
Dawit, G.; Girma, Z.; Simenew, K. A review on biology, epidemiology and public health significance of leishmaniasis. J. Bacteriol. Parasitol., 2013, 4(2), 166.
[50]
Armson, A.; Kamau, S.W.; Grimm, F.; Reynoldson, J.A.; Best, W.M.; MacDonald, L.M.; Thompson, R.C. A comparison of the effects of a benzimidazole and the dinitroanilines against Leishmania infantum. Acta Trop., 1999, 73(3), 303-311.
[http://dx.doi.org/10.1016/S0001-706X(99)00034-0] [PMID: 10546848]
[51]
João, A.; Pereira, M.A.; Cortes, S.; Santos-Gomes, G.M. Canine leishmaniasis chemotherapy: Dog’s clinical condition and risk of Leishmania transmission. J. Vet. Med. A Physiol. Pathol. Clin. Med., 2006, 53(10), 540-545.
[http://dx.doi.org/10.1111/j.1439-0442.2006.00869.x] [PMID: 17105576]
[52]
Marques, C.; Carvalheiro, M.; Pereira, M.A.; Jorge, J.; Cruz, M.E.M.; Santos-Gomes, G.M. Efficacy of the liposome trifluralin in the treatment of experimental canine leishmaniosis. Vet. J., 2008, 178(1), 133-137.
[http://dx.doi.org/10.1016/j.tvjl.2007.07.016] [PMID: 17855131]
[53]
Nardone, A.; Zervas, G.; Ronchi, B. Sustainability of small ruminant organic systems of production. Livest. Prod. Sci., 2004, 90(1), 27-39.
[http://dx.doi.org/10.1016/j.livprodsci.2004.07.004]
[54]
Rafiei Tabatabaei, R.; Nasirian, A. Isolation, identification and antimicrobial resistance patterns of E. coli isolated from chicken flocks. Iranian J. Pharmaco. Ther., 2003, 2(2), 39-0.
[55]
Rangin, M.; Basu, A. Lipopolysaccharide identification with functionalized polydiacetylene liposome sensors. J. Am. Chem. Soc., 2004, 126(16), 5038-5039.
[http://dx.doi.org/10.1021/ja039822x] [PMID: 15099065]
[56]
Dissanayake, D.R.A.; Wijewardana, T.G.; Gunawardena, G.A.; Poxton, I.R. Potential use of a liposome-encapsulated mixture of lipopolysaccharide core types (R1, R2, R3 and R4) of Escherichia coli in controlling colisepticaemia in chickens. J. Med. Microbiol., 2010, 59(Pt 1), 100-107.
[http://dx.doi.org/10.1099/jmm.0.014720-0] [PMID: 19797465]
[57]
Economou, V.; Gousia, P. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist., 2015, 8, 49-61.
[http://dx.doi.org/10.2147/IDR.S55778] [PMID: 25878509]
[58]
Rathbone, M.J.; Gurny, R. Controlled Release Veterinary Drug Delivery: Biological and pharmaceutical considerations; Elsevier: Amsterdam, The Netherlands, 2000, pp. 1-375.
[59]
Rathbone, M.J.; Burke, C.R.; Ogle, C.R.; Bunt, C.R.; Burggraaf, S.; Macmillan, K.L. Design and development of controlled release intravaginal veterinary drug delivery systems. Controlled Release Veterinary Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2000, pp. 173-200.
[http://dx.doi.org/10.1016/B978-044482992-4/50025-3]
[60]
Gardyne, S.J.; Mucalo, M.R.; Rathbone, M.J. The application of co-melt-extruded poly(ε-caprolactone) as a controlled release drug delivery device when combined with novel bioactive drug candidates: Membrane permeation and Hanson dissolution studies. Results Pharma Sci., 2011, 1(1), 80-87.
[http://dx.doi.org/10.1016/j.rinphs.2011.11.002] [PMID: 25755986]
[61]
Rathbone, M.J.; Macmillan, K.L.; Jöchle, W.; Boland, M.P.; Inskeep, E.K. Controlled-release products for the control of the estrus cycle in cattle, sheep, goats, deer, pigs, and horses. Crit. Rev. Ther. Drug Carrier Syst., 1998, 15(4), 285-379.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v15.i4.10] [PMID: 9736416]
[62]
Irwin, P.J. Companion animal parasitology: A clinical perspective. Int. J. Parasitol., 2002, 32(5), 581-593.
[http://dx.doi.org/10.1016/S0020-7519(01)00361-7] [PMID: 11943231]
[63]
Witchey-Lakshmanan, L.C. Long-acting control of ectoparasites: A review of collar technologies for companion animals. Adv. Drug Deliv. Rev., 1999, 38(2), 113-122.
[http://dx.doi.org/10.1016/S0169-409X(99)00011-3] [PMID: 10837751]
[64]
Huet, A.-M.; Julia, B.; Etchegaray, J.-P.; Weil, A.; Jeannin, P. Spot-on formulations for combating parasites. US20030050327A1, 2005.
[65]
Carné, S.; Gipson, T.A.; Rovai, M.; Merkel, R.C.; Caja, G. Extended field test on the use of visual ear tags and electronic boluses for the identification of different goat breeds in the United States. J. Anim. Sci., 2009, 87(7), 2419-2427.
[http://dx.doi.org/10.2527/jas.2008-1670] [PMID: 19329484]
[66]
Souto, E.B.; Fernandes, A.R.; Martins-Gomes, C.; Coutinho, T.E.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Silva, A.M.; Santini, A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci. (Basel), 2020, 10(5), 1594.
[http://dx.doi.org/10.3390/app10051594]
[67]
Yeung, A.W.K.; Eliana, B.; Souto, E.B.; Durazzo, A.; Lucarini, M.; Novellino, E.; Tewari, D.; Wang, D.; Atanasov, A.G.; Antonello, S.A. Big impact of nanoparticles: Analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. Curr. Res. Biotechnol., 2020, 2, 53-63.
[http://dx.doi.org/10.1016/j.crbiot.2020.04.002]
[68]
Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part I-Clinical Trials legislation and good manufacturing practices (GMP) of nanotherapeutics in the EU. Pharmaceutics, 2020, 12(2), 146.
[http://dx.doi.org/10.3390/pharmaceutics12020146] [PMID: 32053962]
[69]
Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part II-production scales and clinically compliant production methods. Nanomaterials (Basel), 2020, 10(3), 455.
[http://dx.doi.org/10.3390/nano10030455] [PMID: 32143286]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy