Published online by Cambridge University Press: 12 March 2014
The purpose of this paper is to present and justify a simple proof procedure for quantification theory. The procedure will take the form of a method for proving a quantificational schema to be inconsistent, i.e., satisfiable in no non-empty universe. But it serves equally for proving validity, since we can show a schema valid by showing its negation inconsistent.
Method A, as I shall call it, will appear first, followed by a more practical adaptation which I shall call B. The soundness and completeness of A will be established, and the equivalence of A and B. Method A, as will appear, is not new.
The reader need be conversant with little more than the fairly conventional use (as in [8]) of such terms as ‘quantificational schema’, ‘interpretation’, ‘valid’, ‘consistent’, ‘prenex’, and my notation (as in [7]) of quasi-quotation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.