Published online by Cambridge University Press: 12 March 2014
In certain applications of truth-functional logic it is of interest to determine classes of formulas equivalent to a given formula Φ under the hypothesis that certain conjunctions of letters of Φ are always false. Of especial interest is the case where the class to be determined is that of simplest normal truth functions. The problem of giving a calculation procedure for this question is evidently a more general form of the simplification problem as considered in [1] and [2]. The purpose of this note is to indicate how the procedure of [1] applies.
Let Π, Π′, Π″, … be fundamental formulas, in the sense of [2], such that every literal of Π, etc., is a literal of Φ and such that Π, Π′, Π″, … are all false for all values of the constituent literals. Then we say that Ψ is a weak simplest disjunctive normal equivalent of Φ if and only if Ψ ≡ Φ, under the hypothesis, and there is no Ψ′ such that Ψ′ is simpler than Ψ and Ψ′ ≡ Φ, under the hypothesis. Similarly, under exactly the same hypothesis, we say that X is a weak simplest conjunctive normal equivalent of Φ. When the class of always false fundamental formulas is empty, as in [1] and [2], we may speak of strong simplest forms and hence of the more general problem of strong simplification.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.