Published online by Cambridge University Press: 12 March 2014
This paper deals with Hilbert's substitution method for eliminating bound variables from first order proofs. With a first order system S framed in the ε-calculus [2] the problem is to associate a system S' without bound variables and an effective procedure for transforming derivations in S into derivations in S′. The transform of a formula A derived in S is to be an “ε-substitution instance” of A, i.e. it is obtained by replacing terms εxB(x) in A by terms of S′. In general the choice of these terms will depend on the particular derivation of A, and not on A alone. Cf. [4]. The present formulation sharpens Hilbert's original statement of the problem, i.e. that the transform of A should be finitistically verifiable, by making explicit the methods of verification used, namely those formalized in S′; on the other hand, it generalizes Hilbert's formulation since S′ need not be restricted to finitist systems.
The bound variable elimination procedure can always be taken to be primitive recursive in (the Gödel number of) the derivation of A. Constructions which transcend primitive recursion can simply be built into S′.
In this paper we show that if S′ is taken to be a second order system with constants for functionals, then the existence of suitable ε-substitution instances can be expressed by the solvability of certain functional equations in S′. We deal with two cases here. If S is number theory without induction, i.e. essentially predicate calculus with identity, then we can solve the equations in question by taking for S′ the free variable part S* of S with an added rule of definition of functionals by cases (recursive definition on finite ordinals), which is a conservative extension of S*.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.