Published online by Cambridge University Press: 12 March 2014
In this paper we consider decision problems for subclasses of Kr, the class of those formulas of pure quantification theory whose matrices are conjunctions of binary disjunctions of signed atomic formulas. If each of Q1, …, Qn is an ∀ or an ∃, then let Q1 … Qn be the class of those closed prenex formulas with prefixes of the form (Q1x1)… (Qnxn). Our results may then be stated as follows:
Theorem 1. The decision problem for satisfiability is solvable for the class ∀∃∀ ∩ Kr.
Theorem 2. The classes ∀∃∀∀ ∩ Kr and ∀∀∃∀ ∩ Kr are reduction classes for satisfiability.
Maslov [11] showed that the class ∃…∃∀…∀∃…∃ ∩ Kr is solvable, while the first author [1, Corollary 4] showed ∃∀∃∀ ∩ Kr and ∀∃∃∀ ∩ Kr to be reduction classes. Thus the only prefix subclass of Kr for which the decision problem remains open is ∀∃∀∃…∃∩ Kr.
The class ∀∃∀ ∩ Kr, though solvable, contains formulas whose only models are infinite (e.g., (∀x)(∃u)(∀y)[(Pxy ∨ Pyx) ∧ (¬ Pxy ∨ ¬Pyu)], which can be satisfied over the integers by taking P to be ≥). This is not the case for Maslov's class ∃…∃∀…∀∃…∃ ∩ Kr, which contains no formula whose only models are infinite ([2] [5]).
Theorem 1 was announced in [1, Theorem 4], but the proof sketched there is defective: Lemma 4 (p. 17) is incorrectly stated. Theorem 2 was announced in [9].
This paper was prepared while the first author was visiting the IBM Thomas J. Watson Research Center, Yorktown Heights, New York. The second author was supported in part by the Center for Research in Computing Technology, Division of Engineering and Applied Physics, Harvard University, and by a Fellowship from the International Business Machines Corporation. The authors are grateful to Burton Dreben, Warren Goldfarb, and the referee for their many helpful suggestions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.