Published online by Cambridge University Press: 12 March 2014
We shall prove the following theorem:
Theorem. For any finite lattice there is a model of ZF in which the partial ordering of the degrees of constructibility is isomorphic with the given lattice.
Let M be a standard countable model of ZF satisfying V = L. Let K be the given finite lattice. We shall extend M by forcing.
The paper is divided into two parts. The first part concerns the definition of the set of forcing conditions and some properties of this set expressible without the use of generic filters.
We define first a representation of a lattice and then the set of conditions. In Lemmas 1, 2 we show that there are some canonical isomorphisms between some conditions and that a single condition has some canonical automorphisms.
In Lemma 3 and Definition 7 we show some methods of defining conditions. We shall use those methods in the second part to define certain conditions with special properties.
Lemma 4 gives a connection between the sets P and Pk (see Definitions 4 and 5). It is next employed in the second part in Lemma 10 in an essential way.
Indeed, Lemma 10 is necessary for Lemma 13, which is the crucial point of the whole construction. Lemma 5 is also employed in Lemma 13 (exactly in its Corollary).
The second part of the paper is devoted to the examination of the structure of degrees of constructibility in a generic model. First, we show that degrees of some “sections” of a generic real (Definition 9) form a lattice isomorphic with K. Secondly, we show that there are no other degrees in the generic model; this is the most difficult property to obtain by forcing. We prove, in two stages, that it holds in our generic models. We first show, by using special properties of the forcing conditions, that sets of ordinal numbers have no other degrees. Then we show that the degrees of sets of ordinals already determine the degrees of other sets.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.