Published online by Cambridge University Press: 12 March 2014
We prove first that if T is a countable complete theory with n(T), the number of countable models of T, equal to three, then T is similar to the Ehrenfeucht example of such a theory. Woodrow [4] showed that if T is in the same language as the Ehrenfeucht example, T has elimination of quantifiers, and n(T) = 3 then T is very much like this example. All known examples of theories T with n(T) finite and greater than one are based on the Ehrenfeucht example. We feel that such theories are a pathological case. Our second theorem strengthens the main result of [2]. The theorem in the present paper says that if T is a countable theory which has a model in which all the elements of some infinite definable set are algebraic of uniformly bounded degree, then n(T) ≥ 4. It is known [3] that if n(T) > 1, then n(T) > 3, so our result is the first nontrivial step towards proving that n(T) ≥ ℵ0. We would also like, of course, to prove the result without the uniform bound on the finite degrees of the elements in the subset.
Theorem 2.1 is included in the author's Ph. D. thesis, as is a weaker version of Theorem 3.7. Thanks are due to Harry Simmons for his suggestions concerning the presentation of the material, and to Wilfrid Hodges for his advice while I was a Ph. D. student.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.