No CrossRef data available.
Published online by Cambridge University Press: 12 March 2014
We start with the framework upon which this paper is based. The most useful reference for these notions is [2]. For any nonempty index set I and any proper filter D on S(I) (the power set of I), we denote by I/D the reduced power of modulo D as defined in [2, pp. 167–169]. The first-order language associated with I/D will always be the same language as associated with . We denote the 2-element Boolean algebra 〈{0, 1}, ⋂, ⋃, c, 0, 1〉 by 2 and 2I/D denotes the reduced power of it modulo D. We point out the intimate connection between the structures I/D and 2I/D given in [2, pp. 341–345]. Moreover, we assume as known the definition of Horn formula and Horn sentence as given in [2, p. 328] along with the fundamental theorem that φ is a reduced product sentence iff φ is provably equivalent to a Horn sentence [2, Theorem 6.2.5/ (iff φ is a 2-direct product sentence and a reduced power sentence [2, Proposition 6.2.6(ii)]). For a theory T(any set of sentences), ⊨ T denotes that is a model of T.
In addition to the above we assume as known the elementary characteristics (due to Tarski) associated with a complete theory of a Boolean algebra, and we adopt the notation 〈n, p, q〉 of [3], [10], or [6] to denote such an elementary characteristic or the corresponding complete theory. We frequently will use Ershov's theorem which asserts that for each 〈n, p, q〉 there exist an index set I and filter D such that 2I/D ⊨ 〈n, p, q〉 [3] or [2, Lemma 6.3.21].
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.