Published online by Cambridge University Press: 12 March 2014
In this paper we continue the study of the structure of the lattice of recursively enumerable (r.e.) open subsets of a topological space. Work in this approach to effective topology began in Kalantari and Retzlaff [5] and continued in Kalantari [2], Kalantari and Leggett [3] and Kalantari and Remmel [4]. Studies in effectiveness of results in structures other than integers began with the work of Specker [17] and Lacombe [8] on effective analysis.
The renewed activity in the study of the effective content of mathematical structures owes much to Nerode's program and Metakides' and Nerode's [11], [12] work on vector spaces and fields. These studies have been extended by Kalantari, Remmel, Retzlaff, Shore and Smith. Similar studies on the effective content of other mathematical structures have been conducted. These include work on topological vector spaces, boolean algebras, linear orderings etc.
Kalantari and Retzlaff [5] began a study of effective topological spaces by considering a topological space with a countable basis ⊿ for the topology. The space X is to be fully effective; that is, the basis elements are coded into ω and the operations of intersection of basis elements and the relation of inclusion among them are both computable. An r.e. open subset of X is then represented as the union of basic open sets whose codes lie in an r.e. subset of ω.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.