Published online by Cambridge University Press: 12 March 2014
Given two (positive) equivalence relations ~1, ~2 on the set ω of natural numbers, we say that ~1 is m-reducible to ~2 if there exists a total recursive function h such that for every x, y ∈ ω, we have x ~1y iff hx ~2hy. We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a “uniformity property” holds). This result allows us to state a classification theorem for positive equivalence relations (Theorem 2). We show that there exist nonisomorphic positive equivalence relations which are complete with respect to the above reducibility; in particular, we discuss the provable equivalence of a strong enough theory: this relation is complete with respect to reducibility but it does not correspond to a precomplete numeration.
From this fact we deduce that an equivalence relation on ω can be strongly represented by a formula (see Definition 8) iff it is positive. At last, we interpret the situation from a topological point of view. Among other things, we generalize a result of Visser by showing that the topological space corresponding to a partition in e.i. sets is irreducible and we prove that the set of equivalence classes of true sentences is dense in the Lindenbaum algebra of the theory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.