Published online by Cambridge University Press: 12 March 2014
The number of homogeneous models has been studied in [1] and other papers. But the number of countable homogeneous models of a countable theory T is not determined when dropping the GCH. Morley in [2] proves that if a countable theory T has more than ℵ1 nonisomorphic countable models, then it has such models. He conjectures that if a countable theory T has more than ℵ0 nonisomorphic countable models, then it has such models. In this paper we show that if a countable theory T has more than ℵ0 nonisomorphic countable homogeneous models, then it has such models.
We adopt the conventions in [1]–[3]. Throughout the paper T is a theory and the language of T is denoted by L which is countable.
Lemma 1. If a theory T has more than ℵ0types, then T hasnonisomorphic countable homogeneous models.
Proof. Suppose that T has more than ℵ0 types. From [2, Corollary 2.4] T has types. Let σ be a Ttype with n variables, and T′ = T ⋃ {σ(c1, …, cn)}, where c1, …, cn are new constants. T′ is consistent and has a countable model (, a1, …, an). From [3, Theorem 3.2.8] the reduced model has a countable homogeneous elementary extension . σ is realized in . This shows that every type σ is realized in at least one countable homogeneous model of T. But each countable model can realize at most ℵ0 types. Hence T has at least countable homogeneous models. On the other hand, a countable theory can have at most nonisomorphic countable models. Hence the number of nonisomorphic countable homogeneous models of T is .
In the following, we shall use the languages Lα (α = 0, 1, 2) defined in [2]. We give a brief description of them. For a countable theory T, let K be the class of all models of T. L = L0 is countable.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.