Published online by Cambridge University Press: 12 March 2014
It was brought to our attention by M. Fitting that Beth's semantic tableau system using the intuitionistic propositional rules and the classical quantifier rules produces a correct but incomplete axiomatization of the logic CD of constant domains. The formula
where T is a truth constant, being an instance of a formula which is valid in all Kripke models with constant domains but which is not provable without cut.
From the Fitting formula one can immediately obtain that the sequent
although provable in the system GD outlined in [3], does not have a cut-free proof (in the system GD).
If the only problem with GD were the sequent S0, then we could extend GD to the system GD+ by adding the following (correct) rule:
Since the new rule still satisfies the subformula property a cut elimination theorem for GD+ would be a step in the right direction for a syntactical proof for the interpolation theorem for the logic of constant domains (cf. Gabbay [2]; see also §4). Unfortunately, one can show that the sequent
where P is a propositional parameter (or formula without x free) has a derivation in GD+, but does not have a cut-free derivation (in GD+). Of course, we could extend GD+ to GD++ by adding the following correct (and with the subformula property) rule:
But then we can find a sequent S2 which, although provable with cut in GD++, does not have a cut-free derivation in GD++.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.