Published online by Cambridge University Press: 12 March 2014
In [6], Nadel showed that if is a recursively saturated model of Pr = Th(ω, +) of power at most ℵ1, then there is a model such that ≡ ∞ω and can be expanded to a recursively saturated model of P. For a fixed completion T of P, can be chosen to have a recursively saturated expansion to a model of T just in case is recursive in T-saturated. (“Recursive in T-saturation” is defined just like recursive saturation except that the sets of formulas considered are those that are recursive in T.)
Nadel also showed in [6] that for a fixed completion T of P, a countable nonstandard model of Pr can be expanded to a model of T (not necessarily recursively saturated) iff satisfies a condition called “exp(T)-saturation.” This condition is stronger than recursive saturation but weaker than recursive in T-saturation. Nadel left open the problem of characterizing the models of Pr of power ℵ1 such that for some , ≣ ∞ω and can be expanded to a model of T. The present paper gives such a characterization. The condition on is that it is recursively saturated, and for each n ∈ ω, the set Tn of Πn-sentences of T is recursive in some type realized in .
This result can be interpreted in various ways, just as the results from [6] were interpreted in various ways in [4]. Friedman [2] introduced the notion of a “standard system.”
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.