Published online by Cambridge University Press: 12 March 2014
A large number of formal systems based on combinatory logic or λ-calculus have been extended to include first order predicate calculus. Several of these however have been shown to be inconsistent, all, as far as the author knows, in the strong sense that all well formed formulas (which here include all strings of symbols) are provable. We will call the corresponding consistency notion—an arbitrary wff ⊥ is provable—weak consistency. We will say that a system is strongly consistent if no formula and its negation are provable.
Now for some systems, such as that of Kuzichev [11], the strong and weak consistency notions are equivalent, but in the systems of [5] and [6], which we will be considering, they are not. Each of these systems is strong enough to have all of ZF set theory, except Grounding and Choice, interpretable in it, and the system of [5] can also encompass first order arithmetic (see [7]). It therefore seems unlikely that a strong consistency result could be proved for these systems using elementary methods. In this paper however, we prove the weak consistency of both these systems by means that could be formulated, at least within the theory of [5]. The method also applies to the typed systems of Curry, Hindley and Seldin [10] and to Seldin's generalised types [12].
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.