Published online by Cambridge University Press: 12 March 2014
The incompleteness of ZF set theory leads one to look for natural extensions of ZF in which one can prove statements independent of ZF which appear to be “true”. One approach has been to add large cardinal axioms. Or, one can investigate second-order expansions like Kelley-Morse class theory, KM. In this paper we look at a set theory ZF(aa), with an added quantifier aa which ranges over ordinals. The “aa” stands for “almost all”, and although we will consider interpretations in terms of the closed unbounded filter on a regular cardinal κ, we will consider other interpretations also.
We start in §1 by giving the axioms for the theory ZF(aa) and presenting a completeness theorem which gives a model-theoretic definition of ZF(aa). In §2 we investigate set theory with a satisfaction predicate and interpret it in a fragment of ZF(aa). In §3 we generalize the methods of §2 to obtain a hierarchy of satisfaction predicates. We use these predicates to prove reflection theorems, as well as to prove the consistency of certain fragments of ZF(aa). Next, in §4 we discuss expandability of models of ZF to models of fragments of ZF(aa) and of Kelley-Morse. We conclude in §5 with a discussion of an extension ZF(aa) + DET of ZF(aa) in which the quantifier aa is self-dual.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.