Published online by Cambridge University Press: 12 March 2014
In this paper we continue, from [2], the development of provably recursive analysis, that is, the study of real numbers defined by programs which can be proven to be correct in some fixed axiom system S. In particular we develop the provable analogue of an effective operator on the set of recursive real numbers, namely, a provably correct operator on the set of provably recursive real numbers. In Theorems 1 and 2 we exhibit a provably correct operator on which is discontinuous at 0; we thus disprove the analogue of the Ceitin-Moschovakis theorem of recursive analysis, which states that every effective operator on is (effectively) continuous. Our final theorems show, however, that no provably correct operator on can be proven (in S) to be discontinuous.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.