Published online by Cambridge University Press: 12 March 2014
A modal theory Z using the Guaspari witness comparison signs ≤, < is developed. The theory Z is similar to, but weaker than, the theory R of Guaspari and Solovay. Nevertheless, Z proves the independence of the Rosser fixed-point. A Kripke semantics for Z is presented and some arithmetical interpretations of Z are investigated. Then Z is enriched to ZI by adding a new modality sign for interpretability and by axioms expressing some facts about interpretability of theories. Two arithmetical interpretations of ZI are presented. The proofs of the validity of the axioms of ZI in arithmetical interpretations use some strengthening of Solovay's result about interpretability in Gödel-Bernays set theory.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.