No CrossRef data available.
Published online by Cambridge University Press: 12 March 2014
The complete, model-complete theories of pseudo-algebraically closed fields were characterized completely in [11]. That work constituted the first step towards determining all the model-complete theories of fields in the usual language of fields. In this paper the second step is taken. Namely, the methods of [11] are extended to characterize the complete, model-complete theories of pseudo-real closed fields and pseudo-p-adically closed fields.
In order to unify the treatment of these two types of fields, the relevant properties of real closed ordered fields and p-adically closed valued fields are abstracted. The subsequent investigation of model-complete theories of fields is based entirely on these properties. The properties were selected in order to solve three problems: (1) finding universal theories with the joint embedding property, (2) finding first order conditions in the usual language of fields which are necessary and sufficient for a polynomial over a field to have a zero in a formally real or formally p-adic extension of that field, and (3) finding subgroups of Galois groups whose fixed fields are formally real or formally p-adic.
This paper is related to, and uses in §1 but not in the other sections, parts of K. McKenna's work [8] on model-complete theories of ordered fields and p-valued fields. However, the results herein are not direct consequences of his work, both because these results apply to a more general situation and because they use a different formal language. Concerning the latter point, in some instances, such as real closed ordered fields and p-adically closed valued fields, model-complete theories in expanded languages do yield model-complete theories of ordinary fields other than theories of pseudo-algebraically closed fields. However, in other cases, such as differentially closed fields, this is not so.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.