Published online by Cambridge University Press: 12 March 2014
This is the third and last part of an investigation in several topics of first order model theory of modules which I began in Some model theory of modules. I. On total transcendence of modules (this Journal, vol. 48 (1983), pp. 570–574) and continued in Some model theory of modules. II. On stability and categoricity of flat modules (this Journal, vol. 48 (1983), pp. 970–985). Throughout I refer to these papers as “Part I” and “Part II”.
Although these parts are only loosely connected, I will tacitly use the notation and preliminaries already introduced in the preceding ones. Further details are given in §0. Concerning Part II, the reader is assumed to be familiar with most of §1, a very small part of §4, and the criterion for elementary equivalence of modules over regular rings given in §3 (Lemma 20) of that part.
Using those tools in this paper I consider completeness of the (elementary) theory of all modules (and of some of its extensions) (§2), and eliminability of cardinality quantifiers in the elementary theories of modules (§3).
§2 is almost entirely devoted to a new short proof based on the technique developed in Part II of a theorem of Tukavkin which seems to be the first relevant result concerning the completeness of the theory of all modules (after the simple observation that any theory of infinite vector spaces is complete).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.