Published online by Cambridge University Press: 12 March 2014
One long-range objective of logic is to find models of arithmetic with noteworthy properties, perhaps properties that imply some long-standing number theoretic conjectures. In areas of mathematics such as algebra or set theory, new models are often made by extending old models, that is, by adjoining new elements to already existing models. Usually the extension retains most of the characteristics of the old model with at least one exception that makes the new model interesting. However, such a scheme is difficult in the area of arithmetic. Many interesting properties of the fine structure of arithmetic are diophantine and hence unchangeable in extensions. For instance, one cannot change a prime number into a composite one by adjoining new elements.
One could possibly get around this diophantine difficulty in one of two ways. One way is to change the usual language of addition and multiplication to an equivalent language that does not transmit so much information to extensions. For instance, multiplication is definable from the squaring function, as one sees from the identity 2xy = (x + y)2 − x2 − y2, and the squaring function in turn is definable either from the unary square predicate (as one sees from the fact that n = m2 if n and n + 2m + 1 are successive squares) or from the divisor relation (as one sees from the fact that n = m2 if n is the smallest number such that m divides n and m + 1 divides n + m). Either of these two alternatives to multiplication might make for interesting extensions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.