Published online by Cambridge University Press: 12 March 2014
Suppose that I is a precipitous ideal over a cardinal κ and j is a generic embedding of I. What is the nature of j? If we assume the existence of a supercompact cardinal then, by Foreman, Magidor and Shelah [FMS], it is quite unclear where some of such j's are coming from. On the other hand, if ¬∃κ0(κ) = κ++, then, by Mitchell [Mi], the restriction of j to the core model is its iterated ultrapower by measures of it. A natural question arising here is if each iterated ultrapower of can be obtained as the restriction of a generic embedding of a precipitous ideal. Notice that there are obvious limitations. Thus the ultrapower of
by a measure over λ cannot be obtained as a generic embedding by a precipitous ideal over κ ≠ λ. But if we fix κ and use iterated ultrapowers of
which are based on κ, then the answer is positive. Namely a stronger statement is true:
Theorem. Let τ be an ordinal and κ a measurable cardinal. There exists a generic extension V* of V so that NSℵ1 (the nonstationary ideal on ℵ1) is precipitous and, for every iterated ultrapower i of V of length ≤ τ by measures of V based on κ, there exists a stationary set forcing “the generic ultrapower restricted to V is i”.
Our aim will be to prove this theorem. We assume that the reader is familiar with the paper [JMMiP] by Jech, Magidor, Mitchell and Prikry. We shall use the method of that paper for constructing precipitous ideals. Ideas of Levinski [L] for blowing up 2ℵ1 preserving precipitousness and of our own earlier paper [Gi] for linking together indiscernibles will be used also.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.