Published online by Cambridge University Press: 12 March 2014
We do a quantitative analysis of modal logic. For example, for each Kripke structure M, we study the least ordinal μ such that for each state of M, the beliefs up to level μ characterize the agents' beliefs (that is, there is only one way to extend these beliefs to higher levels). As another example, we show the equivalence of three conditions, that on the face of it look quite different, for what it means to say that the agents' beliefs have a countable description, or putting it another way, have a “countable amount of information”. The first condition says that the beliefs of the agents are those at a state of a countable Kripke structure. The second condition says that the beliefs of the agents can be described in an infinitary language, where conjunctions of arbitrary countable sets of formulas are allowed. The third condition says that countably many levels of belief are sufficient to capture all of the uncertainty of the agents (along with a technical condition). The fact that all of these conditions are equivalent shows the robustness of the concept of the agents' beliefs having a “countable description”.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.