Published online by Cambridge University Press: 12 March 2014
In 1960 G. F. Rose [R] made the following definition: A function f: ω → ω is (m, n)-computable, where 1 ≤ m ≤ n, iff there exists a recursive function R: ωn → ωn such that, for all n-tuples (x1,…, xn) of distinct natural numbers,
J. Myhill (see [McN, p. 393]) asked if f had to be recursive if m was close to n; B. A. Trakhtenbrot [T] responded by showing in 1963 that f is recursive whenever 2m > n. This result is optimal, because, for example, the characteristic function of any semirecursive set is (1,2)-computable. Trakhtenbrot's work was extended by E. B. Kinber [Ki1], using similar techniques. In 1986 R. Beigel [B] made a powerful conjecture, much more general than the above results. Partial verification, falling short of a full proof, appeared in [O]. Using new techniques, M. Kummer has recently established the conjecture, which will henceforth be referred to as the cardinality theorem (CT). It is the goal of this paper to show the connections between these various theorems, to review the methods used by Trakhtenbrot, and to use them to prove a special case of CT strong enough to imply Kinber's theorem (see §3). We thus have a hierarchy of results, with CT at the top. We will also include a discussion of Kummer's methods, but not a proof of CT.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.