Published online by Cambridge University Press: 12 March 2014
In treatises or advanced textbooks on theoretical physics, it is apparent that the way mathematics is used is very different from what is to be found in books of mathematics. There is, for example, no close connection between books on analysis, on the one hand, and any classical textbook in quantum mechanics, for example, Schiff, [11], or quite recent books, for example Ryder, [10], on quantum field theory. The differences run a good deal deeper than the fact that the books on theoretical physics are not written in the definition-theorem-proof style characteristic of pure mathematics. Although a good many propositions are proved in the books on physics, there are almost with exception no existential proofs, and consequently there is no really serious systematic use of quantifiers. Another important characteristic is the free use of infinitesimals. In fact, most results would not lose anything, from a physicist's point of view, by leaving them in approximate form, i.e., instead of strict equalities or inequalities, using equalities or inequalities only up to an infinitesimal.
The discrepancy between the way mathematics is ordinarily done in theoretical physics and the way it is built up from a foundational standpoint in any of the standard modern views raises the question of whether it might be possible to construct quite directly a rigorous foundation that reflects a significant part of this standard practice in theoretical physics. Other parts of standard practice in physics, for example, the use of physically intuitive but nonrigorous arguments, are not present in our system.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.