Published online by Cambridge University Press: 12 March 2014
Tarski [19] proved the important theorem that the class of representable relation algebras is equationally axiomatizable. One of the key steps in his proof is showing that the class of (isomorphs of) simple set relation algebras—that is, algebras of binary relations with a unit of the form U × U for some non-empty set U —is universal, i.e., is axiomatizable by a set of universal sentences. In the same paper Tarski observed that the class of (isomorphs of) relation algebras constructed from groups (so-called group relation algebras) is also universal.
We shall abstract the essential ingredients of Tarski's method (in Corollary 2.4), and then combine them with some observations about atom structures, to establish (in Theorem 2.6) a rather general method for showing that certain classes of simple relation algebras—and, more generally, certain classes of simple algebras in a discriminator variety V—are universal, and consequently that the collections of (isomorphs of) subdirect products of algebras in such classes form subvarieties of V. As applications of the method we show that two well-known classes of simple relation algebras, those constructed from projective geometries (sometimes called Lyndon algebras) and those constructed from modular lattices with a zero (sometimes called Maddux algebras), are universal. In the process we prove that these two classes consist precisely of all (isomorphs of) complex algebras over the respective geometries and modular lattices, provided that we choose the primitive notions of the latter structures in an appropriate fashion. We also derive Tarski's theorems and a related theorem of the author as easy corollaries of Theorem 2.6.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.