No CrossRef data available.
Published online by Cambridge University Press: 12 March 2014
Let CR denote the first-order theory of commutative rings with unity, formulated in the language L = 〈 +, •, 0, 1〉. Virtually everything that is known about existentially complete (e.c.) models of CR is contained in Cherlin's paper [2], where it is shown, in particular, that the e.c. models are not first-order axiomatizable. The purpose of this note is to show that, in analogy with the case of fields, there exists a unique prime e.c. model of CR in each characteristic n > 2. As a consequence we settle Problem 8 in the list of open questions at the end of Hodges' book Building models by games ([5], p. 278).
By a “prime” e.c. model of characteristic n ≥ 2 we mean one that embeds in every e.c. model of characteristic n. (The embedding is not always elementary, since [2] not all e.c. models of characteristic n are elementarily equivalent.) The prime model is characterized by the fact that it is the union of a chain of finite subrings each of which is an amalgamation base for CR. In §1 we describe the finite amalgamation bases for CR and show that every finite model embeds in a finite amalgamation base; in §2 we use this information to obtain prime e.c. models and answer Hodges' question.
Our results on prime e.c. models were obtained some years ago, during the fall term of 1982, while the author was a visitor at Wesleyan University. The author wishes to take this opportunity to thank the mathematics department at Wesleyan for its hospitality during that visit, and subsequent ones.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.