Published online by Cambridge University Press: 12 March 2014
Many known tools for proving expressibility bounds for first-ordér logic are based on one of several locality properties. In this paper we characterize the relationship between those notions of locality. We note that Gaifman's locality theorem gives rise to two notions: one deals with sentences and one with open formulae. We prove that the former implies Hanf's notion of locality, which in turn implies Gaifman's locality for open formulae. Each of these implies the bounded degree property, which is one of the easiest tools for proving expressibility bounds. These results apply beyond the first-order case. We use them to derive expressibility bounds for first-order logic with unary quantifiers and counting. We also characterize the notions of locality on structures of small degree.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.