Published online by Cambridge University Press: 12 March 2014
A version of Herbrand's theorem tells us that a universal sentence of a first-order language with at least one constant is satisfiable if and only if the conjunction of all its ground instances is. In general the set of such instances is infinite, and arbitrarily large finite subsets may have to be inspected in order to detect inconsistency. Essentially, the reason that every member of such an infinite set may potentially matter, can be traced back to sentences like
(1)
Loosely put, such sentences effectively sabotage any attempt to build a model from below in a finite number of steps, since new members of the Herbrand universe are constantly brought to attention. Since they cause an indefinite expansion of the relevant part of the Herbrand universe, such sentences could quite appropriately be called expanding.
When such sentences are banned, stronger versions of Herbrand's theorem can be stated. Define a clause (disjunction of literals) to be non-expanding if every non-ground term occurring in a positive literal also occurs (possibly as an embedded subterm) in a negative literal of the same clause. Written as a disjunction of literals, the matrix of (1) clearly fails this criterion. Moreover, say that a sentence is non-expanding if it is a universal sentence with a quantifier-free matrix that is a conjunction of non-expanding clauses. Such sentences do in a sense never reach out beyond themselves, and the relevant part of the Herbrand universe is therefore drastically reduced.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.