Published online by Cambridge University Press: 12 March 2014
We show that for every c.e. degree a > 0 there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is {0, a}. This result can be extended in two directions. First we show that for every uniformly c.e. collection of sets S there exists an intrinsically c.e. relation on the domain of a computable structure whose degree spectrum is the set of degrees of elements of S. Then we show that if α ∈ ω ∪ {ω} then for any α-c.e. degree a > 0 there exists an intrinsically α-c.e. relation on the domain of a computable structure whose degree spectrum {0, a}. All of these results also hold for m-degree spectra of relations.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.